Dirasat, Pure Sciences, Volume 34, No. 2, 2007

Persistence and Stability for a Three-Species Ratio-Dependent
Predator-Prey System
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ABSTRACT

In this paper we study some qualitative properties such as persistence and stability for a three-species ratio-

dependent predator-prey system with time delay in a three-patch environment. It is shown that the system is

permanent under some suitable conditions.
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1. INTRODUCTION

Although the predator-prey theory has seen much
progress in the last five decades, many long standing
mathematical and ecological problems remain open (Rui
and LanSun, 2000).

Since the pioneering theoretical work by (Skellam,
1951), many papers have focused on the effect of spatial
factors, which plays a crucial role in permanence and
stability, of population (Leung, 1987; Rothe, 1976). In
fact, the dispersal between patches often occurs in
ecological environments, and more realistic model should
include the dispersal process. Many authors have studied
the permanence and stability of Lotka-Volterra diffusion
models (El-Owaidy and Ismail, 2003; Freedman and
Takeuchi, 1989; Lu and Takeuchi, 1992). In addition, it is
generally recognized that some kind of time delays are
inevitable in population interactions and tend to be
destabilizing in the sense that longer delays may destroy
the stability of positive equilibrium (see (Cushing, 1977;
Freedman and Tackeuchi, 1989) and the reference cited
therein).

Time delay due to gestation is among them, because
generally duration of 7 time units elapses when an
individual prey is killed and the moment when the
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corresponding increase in the predator population is
realized. The effect of this kind of delay on the
asymptotic behavior of populations has been studied by a
number of papers (see, for example (Wang and Ma,
1997).

In this paper, we incorporate time delay due to
gestation into the ratio-dependent predator-prey diffusion
system. For the three-species ratio-dependent predator-
prey model with diffusion and Michaelis-Menten type
functional response, this results in the following delayed
system:

_ a,%(t)

X, =X, (t{al —a,X (’[)——mx3 0x (t)j
+D, (%, (t)+x, (t)-x, (1))

%, = X, (t)Na, —a,x,(t))+D,(x (t)+x,(t)- xz(t)),> (1.1)

X =X —a+ a}lxl(t_z-)
: 3(t{ Tomx, (t-7)+ x(t —1)}
X4 =X, (t)(a4 —auX, t))+ D4 (XI (t)+ X, (t)_ X4(t»

\

where X; (t) represents the prey population in the
i"™ patch, i =1,2,4 and X, (t) represent the
predator population. 7 > 0 is a constant delay due to
gestation. D, is a positive constant and denotes the
1=1,24.3 » 8 (,]=123,4),and

M are positive constants.

dispersal rate,

We adopt the following notations and concepts
throughout the rest of this work.
let Xx=(X,,X,,X,X,) €R; Z{XE R*:x, 20,i =1,2,3,4}
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The notation X > ( denotes XelIntR*. For
ecological reasons, we consider system (1.1), only in
Int R, . Let C* =C([-7.,0LR; denote Banach space of
all nonnegative continuous functions with

¢] = for pcC*.  (12)

se[—-7

Then, if we choose the initial function space of
system (1.1) to be C7, it can be seen that, for any
¢ =(4,,0,,0,,0,) €C" and ¢(0) > 0, there exists
o >0and a unique X(t,@)of system (1.1) on
[-7, @), which remains positive for all t € [0,), such
solutions of system (1.1) are called positive solutions.
Hence, in the rest of this work , we always assume that

¢ C”,¢(0)>0. (1.3)

Definition 1. System (1.1) is said to be uniformly
persistent if there exists a compact region D < Int R;
such that every solution
X(t) = (X, (1), X, (1), X5 (t), X, (1)) of system (1.1) with
initial conditions (1.3), eventually enters and remains in
the region D.

In the following, we say an equilibrium of the system
is globally asymptotically stable if it attracts all positive
solutions of the system.

The organization of this paper is as follows. In the
next section; we present a uniform persistence results for
system (1.1). In section 3, we derive the local stability.
Section 4 provides sufficient conditions for the positive
equilibrium of system (1.1)to be globally asymptotically
stable.

2. UNIFORM PERSISTENCE

System (1.1) has a unique positive equilibrium, if and
only if the following conditions are true:
(H1) a, >a,,
(H2) maa, >a,(a, —a,)

In the following, we always assume that such a
positive  equilibrium exists and denote it by
E*(xf‘,x;,x;,x:)

Lemma 2.1 Let
X(t) = (X, (1), X, (1), X;(t), X, (t)) denote any positive
solution of system (1.1) with the initial condition (1.3). If
a, < a,, then there exists a T > 0 such that
x(t)<M,, (i=1234) fort>T, Q2.1

where

M, =M,=M,>M’ M, >M.,
a

. a,-a 2.2
M/ —max{a —= &}, M, =2 M]e(a”’“)’ @2)
a,’ a, a ma,

44

Proof: We define V (t)=max{x (t), x, (t), x, (t)}
Calculating the upper-right derivative of V along the
positive solution of system (1.1), we have the following:
(P If x (t)>x,(th  x,(t)>x,(t) or x(t)=x,(t)=x,(t)
and X (t)>%,(t), x(t)=x,(t),

%,(t)=x (t){a ~a,x,(t)- #ﬁz@)}

D'V(t)=

D*V(t)— . )= X, t)[a a0 . (x () 1, 0)-x, ()
X, (t)[a, —a,x, (t)].

X, ()< x,(t) or x(t)=x,(t)=x,(t)

(1)< % (t)

X, (t)=x.(t )[a X, (0)]+ D, (x, 1)+ x, (t) - x,(t)
<x,(t)fa, ~a,x, ().

From (P1)-(P3), we have

D'V(t)< x,(t)a, —a,x(t),i=1o0r2 or4. (2.3)

From (2.3), we can obtain the following:

(i) If max{x,(0),x,(0),x,(0)} < M, then

max{x, (t),x, (), x, ()} <M,, t>0.
(i) If max{x,(0),x,(0),x,(0)}>M,, and

i= 124{M1(ai _aiiMl)}’ (0{ > 0)’
we consider the following

— 0 =max,

four possibilities:

@) V(O)=x0)>M,x0)>x0k x(0)>x0)
(b) V(0)=x(0)>M,x (0)<x (0 x(0)<x0)
©) V(0)=x0)>M,x0)<x 0 x(0)<x0)
@) V(0)=%0)=x(0)=x(0)>M..

If (a) holds, then there exists & > 0,such that if

t €[0,¢&), then V(t)=x,(t)>M,, and we have
DV(x,(t). %, (t). x,(t)=x{t)<-a<o0.

If (b) holds, then there exists & > 0,such that if

t €[0,&),then V(t)=x,(t)>M,, and we have
D'V (x,(t).x, (t)x,(t)) = %, (t) < — < 0.

If (c) holds, then there exists & > 0,such that if

t €[0,&),then V(t)=x,(t)>M,, and we have

D'V (x,(t).x, (t),x,(t)) = %, (t) < — < 0.
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If (d) holds, then there exists & > 0,such that if
t €[0,¢),then
V(t)=x(t)>M,,or V(t)=x,(t)>M,
or V(t): X4(t)> M,.
Similar to (a), (b) and (c), we have
DV (x,(t). x, (t), x,(t))=%,(t), (i =10r2 or 4) < — < 0.
From what has been discussed above, we can
conclude that if V(0)>M,  then V(t) is strictly
monotone decreasing with speed at least ¢, therefore,
there exists T, > 0,if t > T, we have
V(t)=max{x,(t),x,(t). x,t)} <M.
In addition, from the third equation of system (1.2) we
obtain ,(t)< (a,, —a,)x,(t)
For t > 7, we have x,(t)< x,(t—z)™™",
which is equivalent to
t>7,  x(t-7)2x(te"™".
Therefore, for t > T, + 7, we have

IR R U

M, +mx,(t—7)

£x3(t){—a3+ a,M, }

M, +me® ) x ()

=X (t) (a31 _a3)MI _ma.ze(ata“){x,z(t)
’ M, +me® ) x (t)

A standard comparison argument shows that
limsup X, (t) < M. The proof is completed.
Theorem 2.1 Suppose that system (1.1) satisfies (H1)
and the following:

(H3)a, >a,/m+D,;
(H4)a, >D,;
(H5)a, >D,.

Then system (1.1) is uniformly persistent.

Proof: Suppose X(t) = (X, (1), X, (1), X; (1), X, (1))
is a solution of system (1.1), which satisfies (1.3).
According to the first equation of system (1.1), if (H3)
holds, then

. a
Xl(t)> Xl(t)|:a1 _ﬁ_Dl _allxl(t)i|’ (24)
which implies that
l‘i_glinf Xl(t)2 (al _a13/m - Dl)/all =m,.

Hence, for large t, X, (t) > m1/2,

and Xz(t)2x3(t){—a3+ (avm/z }

mx, (t—7)+m, /2

Using the fact that, for large t,

x,(t—7)< x,(the™,

we have
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)-(3 (t)Z X, (t)|:m|(a31 -8, )/2_ ma3ea‘TX3 (t):|’ (2.5)

me*"x, (t)+m,/2
which yields
fimint 12 m (2, ~a, e (2ma,)' =,
Therefore, for large t, we have x,(t)>m, /2.

In addition, from the second equation of system (1.1),
we obtain %, (t)> x, (tfa, — D, —a,,x, (t)],

which implies that liminf x,(t)> === =m,.
22

Thus for large t, we have X, (t)>m,/2.

Moreover, from the forth equation of system (1.1) we

obtain

%,(t)> x,(t)a, - D, —a,x, ()],

which implies that liminf x,(t) > 22

4 4Em

a,
Thus for large t, we have x,(t)>m,/2.
Now, we let

D ={(X1,X2,X3,X4)

Then Dis a bounded compact region in R: which

4+

% <x <M,i= 1,2,3,4}. 2.6)

has positive distance from coordinate planes.

From what has been discussed above, we obtain that
there exists a T > 0, if '[>T*,then every positive
solution of system (1.1) with initial condition (2.2),
eventually enters and remains in the region D . The proof
is completed.

3. LOCAL ASYMPTOTICAL STABILITY

Linearizing system (1.1) at E*(xl* X, X5, X4) , we obtain

Nl(t): AllNl(t)+ AIZNZ(t)+ AlzNa(t)+ A14N4(t)=

N, (t)= AN, (E)+ AN, (H)+ ALN, (1) (3.1)
Nz(t): BB]Nl(t_T)+ Bsst(t_T)’
N4(t):A Nl(t)+A42Nz(t)+ A44N4(t)
where
Dx, Dx; . a,ala, —a
Al]=_ )1(;2_ )I(:A_allxl‘}' 13 3r(na3;1 3)=A|2=
2
D1’A13 :_am(&j 3A14 = Dl’
a,
D,x, D,x; .
AZI = Dz’ Azz :_%_%_azzvau = DZ'
2 2
31 P j _a3(a3] az)
p —@i-a) g
! ma,, o a,,
D,x, D,x .
AM = D4’ Az4 =D ’A44 _—%—#—344&‘
X, X,
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Theorem 3.1. Suppose that system (1.1) satisfies
(HT),(H2) and the following:
6) _(ZAII + A12 + AM + A21 + A41)/A13 +27(831 - Bza)< 0,
7) 2A,+ A+ A, + A, +A, <0,
8) 2A, + A, + A, +A, +A, <0,
9) (B, - B,,)<]1.

Then the positive equilibrium E’of (1.1) is locally
asymptotically stable.
Proof: The third equation of (3.1) can be rewritten as

%{Nz(t% B,, j N,(s)ds + B, j N3(s)ds}

=B, N, (t)+B,N,(t)

31771 3373

(3.2)

Define

t

W, (N)t)= {NS(t)+ B, [N,(s)ds+B,, j N3(s)ds}2. (3.3)

t-r

Then, along the solution of (3.1), we have

L, (N )t)= 2B, N, () + BN, (1]

dt

{N3(t)+ BmiNl(s)ds R B”iN}(s)ds}

= 2B, N, (ON, (t)+2B, N3 (t)+ 2B5N, (t) [ N, (s)is

t

+2B,B.N ()j N (5)ds-+ 28, BN, (O N, (s)s

33773
t-r

+2BIN, (0)[ N, (s)ds

Using the Cauchy-Schwarz inequality and the
inequality
a > +b’ > 2ab, we get

S (NXE) < 2B, N, ()N ()+ZBuN;()
+7(B, - B,, (B, N(t)-B,N?(t))

+(B,-B ){ HIN s)ds BUJ.N } (4.4)

Now let W, (N )(t) be defined by
W, (£) =W, (N Xt) =W, (N XE)+W,, (N e, (4.5)

W, (N)t)=(B, - BB){B“ ” N}(s)dsdv—B,, ” Nj(t)dsdv}

(3.6)

Then we derive from (3.4)-(3.6) that

W, (N )t)< 2B, N, (tN, (t)+2B,NZ(t)+22(B, - B,,)

31771

(Bz,Nl (t)-B.N: ()
Let

W (t)=w(N)t)= A S [Nz ()

3

)+ N2(t)+N? (t)]+W3 (t)

then, along the solution of (3.1), we have

d
—Wilt)x 22— B, N
Qs 22un

PM(MNZ@) }\

FAN, 0+ AN, (1)
-z%N2<t>[AﬂN1<t>+AHN2<t>+Amm(t)]

3

3

2?:1 N, (AN, (£)+ AN, ([t)+ AN, ()]

41" 71 42772

+2B, N, (t)N,(t)+2B N 2(t)

31071 33773

> (3.7)

+22(B, - B,, B, N(t)-B,NZ(t))
B, {AHNI()+A22N2()+A44N4()}
Al +(A,+A, N +N2)

B, {(AM + A NS (0)+ N2 () }

A, +(A, +A, NZ(1)+ N2 (1))

+2B,N(t)+27(B, -B,,) j
(BN} (t)-B,N; (1)

Using the inequality a* +b* > 2ab, we have

iW(t)S 31 2A11+A12+A14+A21 41 Nz
dt A13 +2T(le Bss )le
- i?l [2Azz + A12 + A21 + A24 + A.u]NzZ

- Bsz)Bas]Naz

+[2B,, —27(B,,
_%[ZAM + A14 + A41 + Az4 + A42]N42'
3

Then, we have

SWER) - N O)- N )-a N O-a N, G9)
in which

a, = BSI(ZAII + A12 ZIAM + AZI + A41)_2,[_(B“ _ B33)le’
3

- i“ (A, +A,+A, + A, +A,)

a,=—2B, + 21(831 -B, )Bsz >

B
a, = Ajl (2A44 + A14 + Az4 + A41 + A42)
4
Clearly, assumptions (H6)-(H9) imply that

a,>0,a,>0,a, >0,a, >0.
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Denote «o :min{a a,,a,,a,}. Then (3.8) leads to

+a“N s)+NZ(s)+ N2(s)] ds <W(t),
for t >T, (3.9
and which implies
N ()+ N3 )+ NI (0)+ NS () e L (T, o0).

It is easy to see from (3.1) and the boundedness of
4

N(t) that D N7 (t)
i=l

using Barabalates Lemma (Gopalsamy, 1992), we can

is uniformly continuous and then,

conclude that hmz N; > — (). Therefore, the zero

t—
solution of (3.1) is asymptotlcally stable and this
completes the proof.

Remark: We remark here that, from the proof of
Theorem (3.1), it is easy to know that, under the
Assumptions (H1) and (H2), if
2A+A+A +A,+A, <O,
2AL+A,+A +A, +A, <0, and
2A,+A+A +A+A, <O,
then the positive equilibrium of the “instantaneous”
(when 7 =0) model (1.1) is locally

asymptotically stable. If
2AL+A,+A +A,+A, <0, and
2A,+A, +A +A,+A, <0,
then the local stability of E’of (1.1) is preserved for
small 7 satisfying (H6) and (H9).

4. GLOBAL ASYMPTOTIC STABILITY

In this section, we proceed to the study of global
attractively of positive equilibrium of system (1.1). To
achieve this, we need the following theorem. But let us
first consider an autonomous system of delay differential
equation defined as

X(t)=F(x, ). (4.1)

such that F(0)=0 and F:C([-7,0)R")—>R",7>0,
is Lipschitzian, where C=C ([— r,O], R")is the set of
continuous functions defined on [—7,0], with the norm
||¢|| =max_ .,

R".

Theorem A (Kuang, 1993) Let W,(e),
W, (®) andW, (0) be nonnegative continuous scalar
functions such that

- 160 -

w,(0) =0,i =1,2,4;w,(r) >0, w,(r) >0 for

r>0,lim ,, w(r)=+0and V:C5R is a
continuously differentiable scalar functional for a
special set S of solutions of (1.1), and the following are
satisfied

(1) vig)= (()
(2) V(g)] s,y < —w,(g(0)) i=24.

Then x = 0 is asymptotically stable with respect to
the set S. That is, solutions that stay in S converge to
X=0.

Our strategy in the proof of global asymptotic
stability of the positive equilibrium of (1.1) is to
construct a suitable Lyapunov functional. Let P(U) be
defined by

u
plu)=——,
then system (1.1) can be rewritten as

X[ X \
X\ x
% o %
Xl X3

D . D .
__*lx X4(X1 -X )+X_»«1X1X4(X2 _Xz)

XI =X _all(xl _Xr)+a|3

+zfx x4(x] —xf) (4.2)

+fo xz(x4 —x;l

1
2

f=aux[ {200 ()

. D .
- X, )}_ Xj X, X, (X4 _X4)

4

X4 =X, {_ a, (X4

D .
+X—£X2X4(X1 —xl)

X4
Define
X . X
u= ) u = T
X X,

then system (4.2) becomes
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)

Xlle{_all(xl_xr)+a13|: u u

_R*IX X4(X _Xl*)

2 1
Xl

+R:X1X4(X2 _X;)+%X1Xz(x4 _X;)’

ele). el

u :u{—al,(xl—xf)+ azl[ r '

~a,[Pt-)-PQ’)

D .\ D .
+T)l(lx2x4(x1 - X )+X_*1X4(X2 _XE)

1 1

4.3)

1

D .
+X_*IX2(X4_X4)’
4_X:)}_
-x')

+D_3X1X2(X4 - X:)
4

1

X, =

4 X, {_ a44 (X

+ D: X, X, (XI

X,

Define V(t) (vl (t), 2(t),
v, ()= (t)-x.v. ()=
u(t ) unv, (t)=

p _p (U ) mv3

F(v,)
Observing that
v,F(v,)>0,v, #0;
mu
F ’
) e
It is easy to prove that

[M_M} LW
u u m
Therefore, from (4.3) and (4.4), we finally obtain

. . a D
v, = (Vl +X {_ a,v, +—= (V3 ):| __*lxz XV,
m X

(4.4)

<1, 4.5)

Dl
+—X XV, +
1 1

Dl
—LX X,V
X

1742V

DZ
—ZX,X,V,,

(v + x;’)—D—jxlev2 +
XZ 2

v_av

2272

4.6
\'/3:(v3+u*l—a“vl+%F(v3) (46)

_ale(Va (t

D
- T))+ X_*] XV,

1

1 D|
- XXV +— X2V4]7
X

1M 1

= _a44v4 (V4 + X:)

. D,
v, —EX KV, XXV,
X; )

4

- 161 -

Now we formulate the result on the global stability of
the equilibrium E " of (1.1) as follows.

Theorem 4.1. Suppose that system (1.1) satisfies (H1)-
(H5) and the following (H10) A, > 0,1,2,3,4, where

ma’ DxM, 1 2D,x;M,
= o S R a o — ),
a, xM, 2 X, m,
A = ma, D,x;a,, DM, _ =, DM,
a,D,x 2%, 2x°
Aa —a _ﬁ_ D1M4 _ DIMZX: _TDle
7 m 2x x'm, 2%
1 2a DM, 2DM,x, DM
——m,|a, -+ n+2a“+ 1‘4+ 1*22+ 1*2’
2 m X, mx, X,
— ma]lDlX4a44 _ D1M2 _Za3lDlM2
' a,Dx 2% 2x

then the positive equilibrium E” (X, ,X;, X3, X} ) of
(1.1) is globally asymptotic stable.

Proof: To prove that the global asymptotic stability of
the positive equilibrium of E"of (1.1) is equivalent to
that of the trivial solution of (4.6), let

V +X

Zc(v . j+:IP(V):/P(u*)dV, 4.7)

i=1,2,4

where,
c = ma,, c mD a, X, mD 2, X,
' a, ' Dax D,a,X;

13 137 137

Along the solution of (4.6), we have

)= Lot 50+ P )

S

4 4 2
VXX,

cav—

ViV 44V4
2 2 47

z(va (t))_ ay F(V3 )F (Va (t - T))

SHURE

[(®)

2
X, X, X, X, 2D,c x,v
v, — v, | + ;
X, X

_Clanvlz(t)_ c,a

_ C, D1
X

c,a,Vv

44 V4

s (2V1 - X|v4)

X

a, D, _ Dix,x,
o Bma PO P (0) — VF ()
+2XVF(V )+ a, F(v,(t .[F (s)

X 274 3 31 3

1
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= —c,a,v}(t)-c,a,v:(t)-c,a,vi(t) \

2

cD[f24 /.4 J
2D,c
&(2\/] le4

{%—aﬂjFZ(w(t)FRlXMF(Vs(t)) ><4.8>

=LV, F(v, (t)+a, F(v IF a,v,(s)

+&F(vg(s))—a,ﬂF(vg(s—r))i:xmrwvx@
+2v,(s)] ds. J

Using the inequality a®+b’* >2ab, and the Cauchy-
Schwarz inequality, then from (2.6) and (4.5) we derive,
for t>T", that

d
2vit)=
" (t)=—c,a,v(

3
>
=

cav(t) c,a,Vi(t)

X, 4 2DICIX2V4 2 —XV)
X

(H jF 0,00+ 2 xv P, (0)- va(w(t))

X, X

1 17

+&x2v4F( )+a,F(v JF Wi (s)

D D X, X,
m - T))+ X_*] XV, (S)_ﬁvl (S)

1 17

gvm-claw (t)-c.a,v2 () -c.a,v:(0)

2
c.D X, X X, X 2Dcxv
_1_*][ _4V1 - AVzJ — (2\/1 _X1V4)

+ DM ()4 oy, t))) (v:+F2(v3(t))) > (4.9)

I[a1]|v ] F [Flv. )

DM, x,
~a,|F(v, tr)]+X—M|v |+ =2 5]

-162 -

2¢,.DM
# S (0] 0] - x v

2c,D,M
+ = 1) 1)

+DIM2x;+D,M2}F

1

X;m 2X

+M+D‘—'\{!2}Fz(v3(t))+a31|F(v3(t)jj[all|vl(s)

1

il |F(v (s))+a,|Fv,(t- r))+

+—2D1M X v,(s) +—D‘I\fI 2 |v4(s]] d

Xl ml l

DM,X. ), D,M
—ca, +——=% VX (t)+| —c,a, +

Xl ml

t—

o)

4jvz<t>

[ 2225

Qs _

|V tl) { % 2x
+ a Tj[all !
+%FZ(V3(S))+a}lFZ(Vs(t—T))JF%VzZ(S)

2DMX

1

X m, 2X,

1

xm X

1

| 4,2
- Vi +

2242 (s)+ DM, v ]ds

(o) |

x 2 xm

1

dsdv +%za§l I F2(v,(s)) ds.

V() <-AVI([)-AVi(t

-

2¢c,DM
< 25OMa ot v

1

- AF ()~ Av: )

J

Now define Lyapounov functional V (1) as

ORI { (F)( n

DM4V25) 2D,M,x; DM

(s)} > (4.10)

J
Then we have from (4.7), (4.9) and (4.10) that for
t>T7,

> (4.11)

AV (1) - AV (1) - AF (v, (1) - AV ().
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Define w, (v(t)])=V, (t)

where W, (®) is a continuous positive definite
function of S, S > 0, such that

W, (0) =0and W,(S) =+ as S —> +00. Then,
hypothesis (1) of Theorem A [5]

holds for any (Xl , Xy, U, X4) eR;.

Furthermore, we see from (4.11) that V’(t)|
negative definite for any (X1 » X5, U, X, ) eR : provided
that A, > 0(i =1,2,3,4).

Therefore,

(5.6) 18
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