Anti-Cancer Activity of Three *Terminalia* Species and Preliminary Phytochemical Screening

*Khaled Rashed*¹*, Norhaizan Mohd Esa*²,³, Salmiah Ismail*²

¹ Pharmacognosy Department, National Research Centre, 33 El-Bohouth st.-Dokki, Giza, Egypt- P.O.12622.
² Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
³ Laboratory of Molecule Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

ABSTRACT

This study evaluated anticancer potential of three *Terminalia* species, *Terminalia muelleri*, *Terminalia bellerica*, and *Terminalia laxiflora* and also their phytochemical content were determined. Anticancer potential of the plant extracts was measured according to MTT assay. The results showed that *T. muelleri* methanolic extract was active against breast cancer cell line with IC₅₀ 40 µg/mL. *T. bellerica* methanolic extract exerted cytotoxic effects only against colon cancer and liver cancer cell lines with IC₅₀ of 50 and 15µg/mL, respectively. While *T. laxiflora* methanolic extract did not inhibit the proliferation of all cancer cell lines tested. Phytochemical investigation of the three plant species proved the presence of carbohydrates, flavonoids, tannins, and triterpenes. The methanolic extracts of *T. muelleri* and *T. bellerica* had a significant anticancer activity and so further phytochemical study to isolate and identify the bioactive molecules responsible for the observed anticancer activity is necessary.

Keywords: *Terminalia* species, bark, anticancer, phyto-constituents.

1. INTRODUCTION

Cancer is a disease that causes the death all over the world and represents a major public health burden¹. Treatments of cancers vary depending on the type and stages of cancer. The modalities of treatment include surgery, chemotherapy, hormonal therapy, immune therapy and supportive therapy. Cancer treatments kill cancer cells; however, these treatments can also damage the healthy cells, a matter that causes various side effects². Well known side effects such as nausea, vomiting, hair loss, fatigue, constipation are very common. Many researches tried to find effective treatments for cancer and also the search for compounds having significant anticancer activity from plants which may help to find effective anticancer therapeutics with less side effects. Plants represent the important sources of bio-active phytoconstituents. It has been estimated that about 50% of the prescription products in the world are originating from natural products or their derivatives³.

Terminalia is a tree from Combretaceae family. *Terminalia* genus contained cyclic triterpene and its derivatives, flavonoid, tannin and other aromatic compounds. In traditional medicine, *T. bellerica* was used for high cholesterol and digestive disorders, including both diarrhea and constipation, and indigestion. It was used to protect the liver and to treat respiratory conditions, including respiratory tract infections, and at⁴. The ethanolic extract of *T. muelleri* leaves was used as antioxidants⁵ and to inhibit the growth of *E. coli*, *S. aureus* bacteria and *C. albicans* fungi⁶. *T. laxiflora* bark
is applied to wounds, yaws and haemorrhoids because of its haemostatic and healing effects. The bark has been used in the treatment of malaria. Root decoctions are taken to treat diarrhoea, dysentery and jaundice, and applied to itchy eyes. Leaf extracts are also used against diarrhoea, whereas extracts of various plant parts are administered to treat tuberculosis and cough(7). In the present study, we performed anticancer assay of three methanolic plant extracts of *Terminalia* species against four human cancer cell lines and also phytochemical composition of the extracts was detected.

Materials and Methods

Plants Materials

Terminalia muelleri L. and *Terminalia bellerica* L. barks were collected from Zoo garden, while *Terminalia laxiflora* W. bark was collected from Al-Zohiriya garden, Giza, Egypt in May 2012. The plants were identified by Dr. Mohammed El-Gebaly, Department of Botany, National Research Centre (NRC) and by Mrs. Tereeza Labib at the Ministry of Agriculture and director of Orman Botanical Garden, Giza, Egypt.

Chemical and Reagents

Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), trypsin-EDTA and penicillin–streptomycin were purchased from PAA (Austria). Trypan blue, MTT ([4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide, dimethyl sulfoxide (DMSO) and commercial phytic acid were obtained from Sigma (USA). 96-well plate (Eppendorf, USA), 96-well plate sealing film (Eppendorf, USA), were purchased from Sigma (USA). Hematoxylin and Eosin were bought from Surgipath (USA). All other chemicals and reagents used were of the highest purity grade available.

Cell Lines

The colon cancer (HT-29), liver cancer (HepG2), breast cancer (MCF-7, MDA-MB 231) and BALB/c 3T3 (mouse fibroblast) cell lines were obtained from the American Type Culture Collection (USA).

Preparation of the Extracts

Air dried bark of *Terminalia muelleri* (320 g), *Terminalia bellerica* (450 g) and *Terminalia laxiflora* (280 g) were extracted with methanol:water (80:20, v/v) at room temperature several times (five times) until exhaustion by maceration method for three days. The extract was concentrated under reduced pressure to give 18.5 g, 26 g and 12.8 g of crude extracts, respectively. Each extract was subjected to phytochemical analysis to detect the phyto-constituents according to methods described by Yadav and Agarwala(8).

Growth Inhibition Assay

The colorectal cancer (HT-29) and breast cancer (MCF-7, MDA-MB 231) cell lines was cultured in DMEM while the liver cancer (HepG2), and the normal fibroblast (3T3) cell lines were cultured in RPMI medium supplemented with 10% fetal bovine serum and 1% of penicillin-streptomycin. All cells were incubated in a humidified atmosphere, at 37°C under 5% CO₂. The tetrazolium salt assay was used to evaluate the proliferation of the cells following the modified methods of Shamsuddin *et al.*(9) and Vucenik *et al.*(10). After the cells reached 70-80% confluence, they were detached by trypsinization. The cells marked with trypan blue were counted and seeded at a density of 1×10⁵ cells/well in 96-well microtiter plates overnight in an incubator. The medium was removed the next day, and 0 to 250 μg/mL of each samples in DMSO was added to each well. After 72 h, 20 μL of MTT solution was added and left for 4 h in the incubator. The formazan product was solubilized in 100 μL of dimethyl sulfoxide, and the absorbance was measured at 570 nm using an Elisa plate reader.

Results and Discussion

Anticancer assay

The 3- (4, 5- dimethylthiazol-2- yl) -2, 5- diphenyltetrazolium bromide (MTT) assay is a simple and reliable assay that measures the viability of cells, and it can be used to screen antiproliferative agents(11). Different doses of the sample solution ranging from 0-
250 μg/mL, were applied to colon cancer (HT-29), breast cancer (MCF-7, MDA-MB 231), liver cancer (HepG2) cell lines. The cytotoxicity of the methanolic plant extracts is expressed as IC\textsubscript{50}, and the results are shown in table 1. The results showed that \textit{T. muelleri} had cytotoxicity activity against all the studied cancer cell except for the breast cancer. However, the breast cancer (MCF-7) cell lines was the most sensitive to \textit{T. muelleri} with IC\textsubscript{50} 40 μg/mL. On the other hand, \textit{T. bellerica} exerted cytotoxic effects only against the HT-29 and HepG-2 with IC\textsubscript{50} values of 50 and 15 μg/mL, respectively after 72 h of exposure (Table 1). As indicated in the National Cancer Institute Guidelines (USA), extracts with IC\textsubscript{50}<100 μg/mL are considered antiproliferative agents(12). MDA-MB-231 however, was not sensitive for all sample studied (\textit{T. muelleri}, \textit{T. bellerica}, and \textit{T. laxiflora}). \textit{T. laxiflora} did not inhibit the proliferation of all cancer cell lines tested even for HepG-2 showing an IC\textsubscript{50} value more than 100 μg/mL.

Table 1. Results of anticancer activity of the three methanolic plant extracts

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>IC\textsubscript{50} (μg/mL)-72 hrs incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{HT-29}</td>
</tr>
<tr>
<td>\textit{T. muelleri}</td>
<td>50</td>
</tr>
<tr>
<td>\textit{T. bellerica}</td>
<td>50</td>
</tr>
<tr>
<td>\textit{T. laxiflora}</td>
<td>n.d</td>
</tr>
</tbody>
</table>

Identification of lowest cytotoxic dose of the plant extract for non-tumorigenic cells was performed using a normal cell lines (mouse fibroblast, BalBc 3T3) as comparison. BalBc 3T3 cell line is recommended by US National Institute of Environmental Health Sciences, Interagency Coordinating Committee in the Validation of Alternative Methods for determining basal cytotoxicity(13). No toxic effect on 3T3 cell was observed for all the samples IC\textsubscript{50} was more than 100 μg/mL (Table 1). The presented results showed that all the methanolic plant extracts tested are selective anticancer agents because they caused cell death in the HT-29, HepG2, MCF 7 cell lines but not on normal cell (BalBc 3T3 cell line).

Phytochemicals Analysis

Phytochemical screening of the three \textit{Terminalia} species extracts proved the presence of carbohydrates, tannins, flavonoids and triterpenes (Table 2). The presence of these active compounds in the studied extracts would attribute the anticancer potential of these extracts.

Polyphenolic compounds (flavonoids and tannins) displayed a wide range of biological activities, including anti-inflammatory, antioxidant, antimitogenic, anticarcinogenic, and modulation of enzymatic activities(14,15,16). They can be considered as chemopreventive or therapeutic agents against cancer(17). The flavonol quercetin inhibits the growth of pancreatic cancer tumor cell line by inducing apoptosis(18).

\textit{C. hieronymi} Griseb Shoots proved a strong activity against lung carcinoma cells, mouse lymphoma, and human colon carcinoma and this observed activity is due to the presence of flavonoids(19). The CH\textsubscript{2}Cl\textsubscript{2} extract of \textit{C. macrobothrys} Baill. leaves and \textit{C. zambesicus} Müll. Arg. proved cytotoxic effect against human lung, leukemia and cervix carcinoma cells(20), the observed activity is due to the presence of flavonoids(21).

- 177 -
Table 2. Phytochemical analysis of the three methanolic plant extracts

<table>
<thead>
<tr>
<th>Constituents</th>
<th>T. muelleri</th>
<th>T. bellerica</th>
<th>T. laxiflora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triterpenes and/or Sterols</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrates and/or glycosides</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coumarins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alkaloids and/or nitrogenous compounds</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) presence of constituents, (-) absence of constituents

Betulinic acid, Triterpenic compound, may be considered a potential anti-cancer agent. In many experiments betulinic acid was selective against neuroblastoma cells and lacked side-effects\(^{(22,23)}\). The cytotoxic activity of betulinic acid was tested on more human melanoma cell lines, and a significant inhibition of cell growth was observed and betulinic acid was shown to be responsible for a marked reduction of tumor mass and did not induce any side effects such as weight loss\(^{(24)}\). Pedunculagin which is a tannin derivative molecule proved a strong cytotoxic effect against human hepatocellular carcinoma, human colon cancer cells, mild cytotoxic effect on human breast cancer cells. Tannins, Pedunculagin, castalagin, and grandinin had a selective cytotoxic effect against PRMI-7951 melanoma cells but a weak cytotoxic effect on lung carcinoma, ileocecal adenocarcinoma, epidermoid carcinoma of nasopharynx (KB) and medulloblastoma (TE-671) tumour cells\(^{(25)}\).

CONCLUSION

Based on the results obtained in the presented study, all the methanolic plant extracts did not inhibit the proliferation of breast cancer (MDA-MB-231) cell lines. T. muelleri extract was most effective for MCF-7, followed by HepG-2 and HT-29, T. bellerica extract is most effective for HepG2 followed by HT-29 but with no effect on MCF-7, on the other hand, T. laxiflora extract did not show any inhibition of the proliferation of all cancer cell lines. Also all the extracts did not inhibit the growth of normal cell lines (3T3) a matter that proves their selective towards cancer cells. In conclusion: T. muelleri and T. laxiflora extracts can be considered as a source of potential anticancer agents.

REFERENCES

(4) Amrithpal, S.S. Herbalism, phytochemistry and Ethanopharmacology, Science Publisher; 2011; 357-361.

الفاعلية المضادة للسرطان من ثلاثة أنواع من الترميناليا والتحليل الفيتوكيميائي المبدئي

خالد راشد 1، نورهان عيسى 2، سالمية إسماعيل 3

1 مركز البحوث الوطني، مصر.
2 كلية الطب وعلوم الصحة، جامعة بوترا، ماليزيا.
3 معهد العلوم الحيوية، جامعة بوترا، ماليزيا.

ملخص

هذه الدراسة قمت الفاعلية المضادة للسرطان من ثلاثة أنواع من الترميناليا وهي ترميناليا موليري وترميناليا بقريكا وترميناليا بقريكا لاستفزاز وكذلك محتراف الكيميائي البصيلي. وقد تم قياس إمكانات المضادة للسرطان من المستخلصات البشري وفقاً لفحص MTT. وظهر أن المستخلص الميثانول من ترميناليا موليري فقد كان فعالاً فقط على خلايا سرطان القولون وسرطان الكبد مع تركيز تثبيت بين 50 و15 ميكروجرام/مل على التوالي. في حين أن المستخلص الميثانول من ترميناليا لاسيجمرا تممنع انتشار نمو كافة خطوط الخلايا السرطانية التي تم اختبارها. في حين أن التحقيق الكيميائي البصيلي من الأنواع المتنوعة الثلاثة تأكد الكيروهيدرات، الفلافونويد والصفيات، والتوربيديس الثلاثية. وبناءً على المستخلصات الميثانولية من ترميناليا موليري وترميناليا بقريكا ذات نشاط كبير مضاد للسرطان، فلقد أشارت الكيميائي البصيلي الأقدام الهادفة إلى عزل المركبات والتفريق إلى الجزيئات الحيوية النشطة المطلوبة عن النشاط المضاد للسرطان يكون ضرورياً.

الكلمات الدالة: أنواع الترميناليا، الساق، المضاد للسرطان، المكونات الفيتوكيميائية.