Commutativity Results for Prime and Semi-prime Rings with Derivations

Abdel-Rahman H. Majeed and Mehsin J. Atteya *

ABSTRACT

The main purpose of this paper is to introduce new results concerning prime and semi-prime rings which satisfy some additional conditions; so that we obtain a prime ring that is commutative and a semi-prime ring that contains a non-zero central ideal.

Keywords: Prime ring, semi-prime ring, central ideal, derivation and commutative ring.

Mathematical Subject Classification: 16N10, 16W25, 16U80.

1-INTRODUCTION

Many studies were done on derivations and commutativity in prime and semi-prime rings, (Herstein, 1978) proved that if R is a prime ring of characteristic (not 2) which admits a non-zero derivation, such that; d (x) d (y) = d(y) d(x) for all x, y \in R, then R is commutative. (H.E. Bell and W.S.Martindale, 1987) proved that if R is a prime ring and U is a non-zero right ideal, and if R admits a non-zero derivation d such that [x,d(x)] is central for all $x \in U$, then R is commutative. M.N.Daif and H.E. Bell (1992) proved that a semi-prime ring R must be commutative if it admits a derivation d such that (i)d ([x,y]) = [x,y] for all x,y \in R, or (ii) d([x,y])+[x,y] = 0 for all x,y $\in \mathbb{R}$. H.E. Bell and M.N. Daif (1995) proved that; if R is a prime ring and U is a non-zero right ideal, and if R admits a non-zero U^{*} derivation d, then either R is commutative or $d^2(U) = d$ (U) d (U) = $\{0\}$. Where d is a U^{*}- derivation If d(x)d(y) +d(xy) = d(y)d(x) + d(yx) for all x,y \in U. Hongan (1997) proved that if R is a 2- torsion free semi-prime ring, Z(R)the center of R and d:R \rightarrow R is a derivation. If d([x,y]) + $[x,y] \in Z(R)$ or $d([x,y]) - [x,y] \in Z(R)$ for all $x, y \in U, U$

a non-zero ideal of R, then R is commutative. M.N. Daif (1998) proved that; if R is a semi-prime ring and U is a non zero two – sided ideal of R, and R admits a U^{***} -derivation d which is non-zero on U, then R contains a non-zero central ideal, where d is a U^{***} - derivation if d(xy)=d(yx) for all x, $y \in U$. In this paper we will prove new results on prime and semi-prime rings with derivations.

2- PRELIMINARIES:

Throughout this paper, R denotes a ring, and it is called a semi-prime ring if a Ra= (0), with a \in R implies a=0, also R is called a prime ring if aRb = (0), a, b \in R, implies that a=0 or b=0. The ring R is said to be n-torsion free, where n \neq 0 is an integer, if wherever nx = 0, with x \in R, then x =0.

If U is a non-empty subset of R, then the centralizer of U in R, denoted by C_R (U), is defined by: C_R (U)= {a \in R/ ax = xa for all x \in U}. If a \in C_R (U) we say that a centralizes U. An additive map d from R to R is called a derivation if d (xy)= d (x)y + x d(y) for all x,y \in R. We write [x,y] = xy-yx and xoy = xy+ yx. Note the important identities [x,yz] = y[x,y]+ [x,y]z and [xy,z] = x[y,z]+ [x,z]y. A map d is called an inner derivation if there exists a \in R such that d(x) = [a,x] for all x \in R and it is called the derivation induced by a. Let U be a subset of R, a map d:R \rightarrow R is said to be centralizing on U if [x, d(x)] \in Z(R) for all x \in U, and is said to be skew – centralizing

^{*} Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq; Department of Mathematics, College of Education, Al-Mustansiriyah University. Received on 6/9/2005 and Accepted for Publication on 4/6/2006.

on U if d(x)x + x d(x) \in Z(R) for all x \in U, it is also said to be n-centralizing on S(resp.n-skew-centralizing on S)if $[d(x),x^n]\in$ Z(R) for all x \in S(resp.d(x)xⁿ+xⁿ d(x) \in Z(R) for all x \in S).

Now, check the following definitions:

Definition 1:

Let R be a prime ring and U a non- zero ideal of R. If d is a non- zero derivation on R such that [d(x), y] = d([x,y]) for all $x, y \in U$. We say that d is a U^{d1}- derivation.

Definition 2:

Let R be a semi-prime ring and U a non- zero ideal of R. If d is a non- zero derivation on R such that [d(x), d(y)] = [x,y] for all x,y \in U. We say that d is a U^{d2}- derivation.

Definition 3:

Let R be a prime ring and U a non- zero one-sided ideal of R. If d is a non- zero derivation on R such that $d(y)\pm d(x)=[d(x),y]\pm [x, d(y)]$ for all x,y \in U. We say that d is a U^{d3}-derivation.

Definition 4:

Let R be a prime ring and U a non-zero one- sided ideal of R. If d is a non- zero derivation on R such that d(y) - [d(y),x] = [d(x),y] - d(x) for all x,y \in U. We say that d is a U^{d4}- derivation.

We need to state the following results.

Lemma 1 [Bresser, 1993]:

Let R be a prime ring and U is a non-zero left ideal. If R admits a derivation d with d (U) \neq {0}, satisfying one of the following conditions:

(i) d is centralizing on U.

(ii) d is skew-centralizing on U. Then R is commutative.

Lemma 2 [Bell and Daif, 1995, Theorem 4]

Let R be a prime ring and U a non-zero right ideal. If R admits a non- zero derivation d such that [x, d(x)] is central for all $x \in U$, then R is commutative.

Lemma 3 [Deng and Bell, 1995, Theorem 2]

Let n be a fixed integer, let R be n!- torsion free semi-

prime ring and U be a non-zero left ideal of R. If R admits a derivation d, which is non-zero on U and n-centralizing on U, then R contains a non-zero central ideal.

Lemma 4 [Herstein, 1978]:

If R is a prime ring of characteristic not 2, which admits a non-zero derivation d such that d(x) d(y)=d(y)d(x) for all x,y \in R. Then R is commutative.

Lemma 5 [Bell and Martindale, 1987, Theorem 3]:

Let R be a semi-prime ring and U be a non-zero left ideal. If R admits a derivation d, which is non-zero on U and centralizing on U, then R contains a non-zero central ideal.

Lemma 6 [Hongan, 1997, Lemma 1(1)]:

Let R be a semi-prime ring and U be a non-zero ideal of R, and let $b \in U$, if [b,x]=0 for all $x \in U$, Then $b \in Z(R)$, therefore, if U is commutative then $U \subseteq Z(R)$.

Lemma 7 [Hongan, 1997, Lemma 1(2)]:

Let R be a semi-prime ring, U a non-zero ideal of R, a $\in R$. If $[a, x] \in Z(R)$, for all $x \in U$, then $a \in C_R(U)$.

Lemma 8 [Lanski, 1997, Main Theorem]:

Let R be a semi-prime ring,d a non-zero derivation of R,and U a non-zero left ideal of R.If for some positive integers $t_0,t_1,...,t_n$ and all $x \in U$, the identity

$$\left[\left[\dots \left[d(x^{t_0}), x^{t_1} \right], x^{t_2} \right], \dots \right] x^{t_n} \right] = 0$$
 holds, then either d(U)=0

or else d(U) and d(R)U are contained in a non-zero central ideal of R.In particular when R is a prime ring, R is commutative.

3- THE MAIN RESULTS ON PRIME RINGS

Theorem 3.1:

Let R be a prime ring and U a non-zero ideal of R .If R admits a non-zero U^{d1} - derivation d, then R is commutative.

Proof: Since d is a U^{d1}- derivation, we have [d(x), y] = d([x,y]) for all x,y \in U. Thus, by replacing x for y, we obtain [d(x), x] = 0 for all $x \in U$. Hence, by Lemma 1, R is commutative.

Now, we can generalize the above theorem as follows:

Theorem 3.2:

Let R be a prime ring and U a non-zero ideal of R. If R admits a non-zero derivation d such that $[d(x),y]-d([x,y]) \in Z(R)$ for all $x, y \in U$, then R is commutative.

Proof: Since we have [d(x), y]- $d([x,y]) \in Z(R)$ for all x,y \in U, replacing x by y, we obtain $[d(y), y] \in Z(R)$ for all y \in U. Therefore, by Lemma 2, R is commutative.

4. THE MAIN RESULTS ON SEMI-PRIME RINGS

The following theorem is considered as an extension of Lemma 4.

Theorem 4.1:

Let R be a 2-torsion free semi-prime ring and U a non- zero ideal of R. If R admits a non-zero U^{d^2} -derivation d, then R contains a non-zero central ideal.

Proof: Since we have d a U^{d2}- derivation, we get [d(x), d(y)] = [x,y], for all x,y \in U. (1)

Then

[d(x), d(y)] - [x,y] = 0 for all $x, y \in U$.

Replacing y by yz, we obtain [d(x), d(yz)]- [x,yz]=0 for all x,y,z \in U.

Then

$$\label{eq:general} \begin{split} & [d(x) \ , d(y)z] + [d(x), \ yd(z)] - y[\ x,z] \ - [x,y]z = 0 \ for \ all \\ & x,y,z \in U. \end{split}$$

d(y)[d(x),z]+[d(x),d(y)]z+y[d(x),d(z)] + [d(x),y] d(z)y[x,z]-[x,y] z=0

for all x,y,z € U. Then according to (1), we obtain
d(y) [d(x),z]+ [d(x),y] d(z) =0 for all x,y,z € U. (2)
Replacing z by zd(x), we obtain

d(y) [d(x),zd(x)]+ [d(x),y] d(zd(x)) =0 for all x,y,z \in U. Then

 $(d(y)[d(x),z]+ [d(x),y]d(z))d(x) + [d(x),y]zd^{2}(x)=0$

for all x,y,z EU.

Now according to (2), we get [d(x),y]zd(x)=0 for all x,y,z EU.Since U is an ideal,so we have

 $[d(x),y] zRd²(x) = 0 \text{ for all } x,y,z \in U.$ (3)

Let $\{P_{\alpha} : \alpha \in \Lambda\}$ be a family of prime ideals of R, such that $\bigcap_{\alpha} p_{\alpha} = \{0\}$. Now (3) yields

$$[d(x), y]zR d^{2}(x) = \{0\}$$
 for all x,y,z \in U.

Hence, for each P_{α} , we either have:

(a) $[d(x),y]U \subseteq P_{\alpha}$ for all x,y $\in U$ or(b)- $d(U) \subseteq P_{\alpha}$.

Call P_{α} an (a)- prime ideal or (b)- prime ideal, according to which one of these conditions is satisfied, note that $[d(x),y] RU \subseteq P_{\alpha}$; for each (a)- prime P_{α} , so either $[d(x),y] \in P_{\alpha}$, for all $x, y \in U$ or $U \subseteq P_{\alpha}$.

In either event

 $[d(x),y] \in P_{\alpha}$ for all x,y $\in U$, and all (a)- prime. (4)

Now consider (b)- prime ideals, taking $x, y \in U$, we have:

$$d^{2}(xy) = d^{2}(x)y + x d^{2}(y) + 2d(x) d(y) \in \bigcap_{\alpha} P_{\alpha}.$$
 So,

 $2d(x) d(y) \in P_{\alpha}$ for all x,y $\in U$. Replacing y by ty shows that $2d(x)d(ty) \in P_{\alpha}$ for all x,y,t $\in U$, then $2d(x) d(t)y + 2d(x) td(y) \in P_{\alpha}$.

 $2d(x) td(y) \in P_{\alpha} \text{ for all } x, y, t \in U, \text{ then } 2d(x) rtd(y) \in P_{\alpha},$ $2d(x) Rtd(y) \subseteq P_{\alpha}$ (5)

and

 $2d(x) tRd(y) \subseteq P_{\alpha} \text{ for all } x, y, t \in U.$ (6)

It follows that either $d(U) \subseteq P_{\alpha}$ or 2d(x) y and $2yd(x) \in P_{\alpha}$ for all x,y $\in U$. In either case, $2[d(x),y] \in P_{\alpha}$ for all x,y $\in U$ and

- (b)- prime P_{α} thus for all x, y \in U. (7)
 - We have ((6) and (7)) that $2[d(x), y] \in \bigcap_{\alpha} P_{\alpha} = \{0\}$. And since R is 2-torsion, [d(x), y]=0 for all x, $y \in U$. In particular, [d(x), x] = 0, for all $x \in U$.

Now by Lemma 5; R contains a non-zero central ideal.

Remark1:

In Theorem 4.1, if R admits adrevation d such that [d(x), d(y)] = [x, y] for all x, y \in U. Then R contains a non –zero central ideal.

Proof: Let d be a derivation such that [d(x),d(y)] = [x,y] for all $x, y \in U$. If d=0, then [x,y]=0 for all $x, y \in U$.

Thus, U is non-zero central ideal.

Now, we suppose that $d \neq 0$, by Theorem 4.1, R contains a non-zero central ideal.

Remark2:

We notice that 4.1 is not true when U is one –sided ideal. The following example explains the above remark. **Example:**

Let F be a field and
$$R = \left\{ \begin{pmatrix} g & 0 \\ gh & 0 \end{pmatrix} / g, h \in F \right\}$$

is a ring with usual multiplication, $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and

U= $\left\{ \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} / g, h \in F \right\}$ be a one-sided ideal of R, and

let d be the inner derivation given by d(x)=[a,x] for all x \in U. It is readily verified that [d(x),d(y)]=[x,y] for all x,y \in U. But the conclusion of the theorems not true.

Let
$$\mathbf{x} = \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix}$, then

$$d(\mathbf{x}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -g \\ 0 & 0 \end{pmatrix}$$

$$d(\mathbf{y}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -h \\ 0 & 0 \end{pmatrix}$$

$$[d(\mathbf{x}), d(\mathbf{y})] = \begin{pmatrix} 0 & -g \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -h \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -h \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & -g \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$[\mathbf{x}, \mathbf{y}] = \begin{pmatrix} g & 0 \\ 0 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & -g \end{pmatrix} - \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} gh - hg & 0 \\ 0 & 0 \end{pmatrix}$$

$$[\mathbf{x},\mathbf{y}] = \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} gn - ng & 0 \\ 0 & 0 \end{pmatrix},$$

since g , h ε F,

$$[\mathbf{x},\mathbf{y}] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
. Thus $[\mathbf{x},\mathbf{y}] = [\mathbf{d}(\mathbf{x}),\mathbf{d}(\mathbf{y})]$. Let $\mathbf{r} = \begin{pmatrix} g & 0 \\ gh & 0 \end{pmatrix}$

 $\in \mathbb{R}$, then

$$[\mathbf{r},\mathbf{x}] = \begin{pmatrix} g & 0 \\ gh & 0 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} h & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} g & 0 \\ gh & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ g^2h & 0 \end{pmatrix}$$
$$\notin \mathbf{U}.$$

i.e. U is non-central ideal.

Theorem 4.2:

Let R be a 2-torsion free semi-prime ring and U a non-zero ideal of R.If R admits a derivation, d, such that d (xoy) \pm [x,y] \in Z(R) for all x, y \in U, then R contains a non-zero central ideal.

Proof:

Let d be a derivation such that d $(xoy)+[x,y] \in Z(R)$ for all x,y \in U. If d=0, then, we have $[x,y] \in Z(R)$, thus from Lemmas 5 and 7, we get U \subseteq Z(R), so U is a central ideal.

Now, suppose $d \neq 0$, then we have $d(xoy) + [x,y] \in Z$ (R) for all x,y \in U, thus d(xoy) + [x,y] commute with any element of R, let $w \in R$, then, [w, d(xoy) + [x,y]] = 0for all x, $y \in U$, $w \in R$. Then

[w, d(xoy)] + [w, [x,y]] = 0 for all $x, y \in U, w \in R$.

Replacing x by y, we obtain 2 $[w, d(y^2)] = 0$ for all y $\in U$, $w \in R$. Since R is 2- torsion free semi-prime, then $[w, d(y^2)] = 0$.

Now, replacing w by y, we obtain $[y, d(y^2)] = 0$ for all $y \in U$. Then by Lemma8, U is a non-zero central ideal, i.e. R contains a non-zero central ideal.

We obtain similar results when $d(xoy) - [x,y] \in Z(R)$ for all x, y $\in U$.

Theorem 4.3:

Let R be a 2-torsion free semi-prime ring and U a non-zero ideal of R. If R admits a derivation d, such that $d([x,y]) \pm (xoy) \in Z(R)$ for all x,y $\in U$, then R contains a non-zero central ideal.

Proof:

We have d a derivation such that d $([x,y]) + (xoy) \in Z$ (R) for all x,y \in U. If d=0, then xoy $\in Z$ (R), for all x, y \in U. Replacing x by y, we obtain $2y^2 \in Z(R)$, for all y \in U. Then, $2y^2$ commute with any element of R, let r \in R, we have 2 [r, y²] =0, for all y \in U. Since R is 2-torsion free semi-prime, we obtain [r, y²] =0 for all y \in U, r \in R.

Now replacing r by d (y) we get $[d(y),y^2] = 0$, for all y \in U. Then by Lemma 3, R contains a non-zero central ideal.

Now, suppose that $d \neq 0$ then we have d([x,y]) + (xoy)

 \in Z(R) for all x,y \in U, replacing x by y, we obtain $2y^2 \in$ Z (R) for all y \in U, then by the same method in the first part, we get R contains a non-zero central ideal.

We obtain a similar result when d $([x,y]) - (xoy) \in Z$ (R), for all x,y $\in U$.

Theorem 4.4:

Let R be a 2- torsion free semi-prime ring and U a non-zero ideal of R. If R admits a non-zero derivation d such that d (xoy) \pm d([x,y]) \in Z(R) for all x,y \in U, then R contains a non-zero central ideal.

Proof: Since d be a non-zero derivation such that, $d(xoy)+d([x,y]) \in Z(R)$ for all x, y $\in U$. Replacing x by y, we obtain 2 $d(y^2) \in Z(R)$ for all $y \in U$.

Now, 2 d(y²) commute with any element of R, let $r \in R$, then 2[r,d (y²)]=0 for all $y \in U$, $r \in R$. Since R is 2-torsion free semi-prime ring and replacing r by y, we get [y,d (y²)]=0 for all $y \in U$. Then by Lemma 8, R contains a non-zero central ideal. We obtain similar results when d(xoy) – d([x,y]) $\in Z$ (R) for all x,y $\in U$.

Theorem 4.5:

Let R be a 2-torsion free semi-prime ring and U a non-zero ideal of R. If R admits a derivation d such that $d(xoy) \pm (xoy) \in Z(R)$ for all x,y $\in U$, then R contains a non-zero central ideal.

Proof: We have d is a derivation such that, d (xoy) + (xoy) $\in Z(\mathbb{R})$ for all x,y $\in U$. If d=0, then we obtain xoy $\in Z(\mathbb{R})$ for all x,y $\in U$. Replacing x by y, we have $2y^2 \in Z(\mathbb{R})$ for all y $\in U$.

Now, $2y^2$ commute with any element of R, let $r \in R$, then since R is 2-torsion free and when replacing r by d(y) we obtain $[d(y),y^2]=0$ for all $y \in U$. Then by Lemma 3, we get R contains a central ideal.

Now, suppose that $d \neq 0$. For any x,y $\in U$, we have

 $d(xoy) + (xoy) \in Z \ (R) \ for \ all \ x,y \in U, \ replacing \ y \ by x \ we \ obtain$

d $(2x^2)$ + $2x^2 \in Z$ (R) for all x \in U.

Now, 2 $(d(x^2) + x^2)$ commute with $r \in R$, then since R is 2-torsion free and when replacing r by x, we get $[d(x^2), x] = 0$ for all $x \in U$. Then by Lemma 8, we obtain R contains a non-zero central ideal.

We get similar results whenever $d(xoy) - (xoy) \in Z$ (R) for all x,y $\in U$.

Theorem 4.6:

Let R be a 2-torsion free semi-prime ring and U a non-zero ideal of R. If R admits a non-zero derivation d such that d (x)oy + xod(y) $\in Z$ (R) for all x,y \in U, then R contains a non-zero central ideal.

Proof: We have d as a non-zero derivation, such that d (x) oy + xd(y) \in U, then d(x) y + xd(y) + d(y) x + yd(x) \in Z(R), thus d (xy) + d(yx) \in Z(R), for all x,y \in U, then d(xy+yx) \in Z (R) for all x, y \in U. Thus, d (xoy) \in Z(R) for all x,y \in U. Replacing x by y, we obtain 2 d (y²) \in Z (R) for all y \in U.

Now, $2d(y^2)$ commutes with any element of R, let w C R, then $2[w, d(y^2)] = 0$ for all $y \in U$, $w \in R$. Since R is 2torsion free semi-prime ring and replacing w by y, we get $[d (y^2),y] = 0$ for all $y \in U$. Thus by Lemma8, we have R contains a non-zero central ideal.

Theorem 4.7:

Let R be a 2-torsion free semi-prime ring and U a non-zero ideal of R. If R admits a derivation d such that d $(x) \text{ od}(y) \pm (xoy) \in Z(R)$ for all x,y $\in U$, then R contains a non-zero central ideal.

Proof: Let d be a derivation such that d (x) od(y)+(xoy) $\in Z(R)$ for all x, y $\in U$. If d =0, then we have xoy $\in Z(R)$ for all x, y $\in U$, replacing y by x we obtain $2x^2 \in Z(R)$. Now, $2x^2$ commutes with any element of R, let r $\in R$ then 2 [r, x^2] =0 for all x $\in U$. Since R is 2-torsion free, then [r, x^2] =0 for all x $\in U$, r $\in R$. Replacing r by d(x) we get [d(x) , x^2] =0 for all x $\in U$. Then, by Lemma 3, R contains a non-zero central ideal.

Now, suppose $d \neq 0$, then we have $d(x)od(y) + (xoy) \in Z$ (R) for all x, y \in U. Thus d(x)od(y) + (xoy) commutes with any element of R. Let $w \in R$, then

[w,d(x)od(y) + (xoy)] = 0 for all x, y $\in U$, w $\in \mathbb{R}$.

Replacing y by x, we obtain

 $2[w, d(x)d(x) + x^2] = 0$ for all $x \in U, w \in R$. Since R is 2-torsion free, we get $[w, d(x) d(x)] + [w, x^2] = 0$ for all $x \in U, w \in R$.

Replacing w by d(x), we obtain $[d(x),x^2] = 0$ for all $x \in U$.

Then, by Lemma 3, R contains a non-zero central ideal. We obtain similar results when $d(x)od(y) - (xoy) \in Z(R)$ for all $x, y \in U$.

Theorem 4.8:

Let R be a 2-torsion free semi-prime ring and U a non -zero left ideal. If R admits a non-zero derivation d such that $d(x)oy-d(xoy) \in Z(R)$ for all $x,y \in U$. Then R contains a non-zero central ideal.

Proof:We have $d(x)oy-d(xoy) \in Z(R)$ for all $x, y \in U$, this implies $xd(y) + d(y)x \in Z(R)$ for all $x, y \in U$. Then x(xd(y)+d(y)x)=(xd(y)+d(y)x)x for all $x, y \in U$.

 $x^2 d(y) + xd(y)x = xd(y)x + d(y)x^2$ for all $x, y \in U$.

This implies $x^2 d(y)=d(y)x^2$ for all $x, y \in U$.

Thus $[d(y),x^2]=0$ for all $x,y \in U$. Replacing y by x, we obtain $[d(x),x^2]=0 \in Z(R)$ for all $x \in U$, so, by Lemma3, R contains a non-zero central ideal.

Corollary 4.9:

Let R be a prime ring and U a non- zero ideal of R .If R admits a non- zero derivation d such that d(x)oy- d(xoy) $\in Z(R)$ for all x,y $\in U$, then R is commutative.

Proof: By assumption, $d(x)oy - d(xoy) \in Z$ (R) for all x,y $\in U$, then d (x) y+ yd(x) -d(xy+yx) $\in Z(R)$ for all x,y $\in U$, thus we have

-(xd(y) + d(y)x) ∈ Z (R) for all x,y ∈ U. Now, -(xd(y) + d(y) x) commutes with x, so we get x[d(y),x] + [d(y),x]x
=0 for all x,y ∈ U, we obtain [d(y),x²] =0 for all x,y ∈ U. Replacing y by x, we get [d(x),x²] =0 for all x ∈ U. Therefore, by Lemma 3, we have R is commutative .

Theorem 4.10:

Let R be a 2-torsion free semi-prime ring and U a non-zero one-sided ideal of R. If R admits a non-zero U^{d_3} - derivation d, then R contains a non-zero central ideal.

Proof: Since d is a U^{d_3} - derivation, then, if we have d(y) - d(x) = [d(x), y]- [x, d(y)] for all x, $y \in U$, then

replacing y by x, we obtain 2[d(x), x] = 0 for all $x \in U$. Since R is 2-torsion free semi-prime, then [d(x), x] = 0 for all $x \in U$. Hence, by Lemma 5, we get R contains a non-zero central ideal.

Now, when we have d(y)+ d(x) = [d(x), y]+ [x,d(y)]for all x,y \in U, then, in the above equation, replacing y by xy, we obtain d(x)y+ xd(y)+d(x)= x[d(x),y]+[d(x),x]y+ d(x)[x,y]+[x,d(x)]y + x[x, d(y)] for all x,y \in U. Then d(x)y + xd(y)+ d(x) = x([d(x),y]+ [x,d(y)]) +d(x) [x,y] for all x,y \in U. Replacing y by x, we obtain $d(x^2) = - d(x)$ for all x \in U. Replacing x by -x, we get $d(x^2) = d(x)$ for all x \in U. (8) Multiplying (1) from left by y, we obtain

 $yd(x^2) = y d(x)$ for all $x, y \in U$. (9)

Multiplying (8) from right by y, we obtain

- $d(x^{2}) y = d(x)y \text{ for all } x, y \in U.$ By subtracting (10) from (9), it gives
 (10)
- $[d(x^{2}),y] [d(x),y] = 0 \text{ for al } x,y \in U.$ Replacing x by -x, we get(11)
- $[d(x²),y] + [d(x), y] = 0 \text{ for all } x, y \in U.$ (12) From (8) we obtain
- 2[d(x), y] = 0 for all x, y $\in U$. (13)

Since R is 2-torsion free semi-prime ring we get [d(x), y] = 0 for all x,y $\in U$. Replacing y by x using Lemma 5, we get R contains a non-zero central ideal.

Theorem 4.11:

Let R be a 2-torsion free semi-prime ring and U a non-zero one-sided ideal of R. If R admits a non-zero U^{d4} -derivation d, then R contains a non-zero central ideal.

Proof: Since d is a U^{d4}-derivation, we have

d(y) + d(x) = [d(x), y] - [x, d(y)] for all x, y $\in U$. (14)

Replacing y by x, we obtain 2d(x) = 2[d(x), x] for all $x \in U$.

Since R is 2- torsion free semi-prime, then

 $\begin{aligned} d(x) &= [d(x), x] \text{ for all } x \in U. \end{aligned} \tag{15} \\ \text{Now, linearization (i.e. putting x-y for x) of (8) gives} \\ d(x) &- d(y) &= [d(x), x] - [d(y), x] \text{ for all } x, y \in U. \end{aligned}$

According to (14) the above calculation reduces to d(y)=[d(y),x] for all x,y \in U. (16)

Substitution (16) in (14) gives:

$d(x) = [d(x), y]$ for all x,y $\in U$.	(17)
Subtracting (15) from (17) we obtain:	
$[d(x), y-x] = 0$ for all $x, y \in U$.	(18)
Putting in (18) 2x for y, it gives:	

 $[d(\mathbf{x}),\mathbf{x}] = 0 \text{ for all } \mathbf{x} \in \mathbf{U}. \tag{19}$

Then by Lemma 5, we get R contains a non-zero central ideal.

Similarly, we can prove the following corollaries

REFERENCES

- Bell, H.E. and Martindale Ill, W.S. 1987. Centralizing Mappings of Semiprime Rings, *Canad. Math.Bull.*, 30: 92-101.
- Bell, H.E. and Daif, M.N. 1995. On Derivations and Commutativity in Prime Rings, *Acta Math. Hungar*, 66 (4): 337-343.
- Bresser, M. 1993. Centralizing Mappings and Derivations in Prime-rings, J. Algebra, 156, 385-394.
- Daif, M.N. and Bell, H.E. 1992. Remarks on Derivations on Semi-prime Rings, *Internet. J. Math. and Math. Sci.*, 15: 205-206.

Corollary 4.12:

Let R be a prime ring with char. $R \neq 2$ and U a nonzero one-sided ideal of R. If R admits a non-zero U^{d3}derivation d, then R contains a non-zero central ideal.

Corollary 4.13:

Let R be a prime ring with char. $R \neq 2$ and U a nonzero one- sided ideal of R. If R admits a non-zero U^{d4}derivation d, then R contains a non-zero central ideal.

- Daif, M.N.1998. Commutativity Results for Semi-prime Rings with Derivations, *Internat. J. Math. and Math. Sci.*, 21 (3): 471-474.
- Deng, Q. and Bell, H.E. 1995. On Derivations and Commutativity on Semi-prime Rings, *Comm. Algebra*, 32: 3703-3713.
- Herstein, I.N. 1978. A Note on Derivations, *Canad. Math. Bull.* 21: 369-370.
- Hongan, Motoshi. 1997. A Note on Semi-prime Rings with Derivation, *Internat.J. Math. and Math. Sci.*, 20 (2): 413-415.
- Lanski, C. 1997. An Engel Condition with Derivation for Left Ideals, *Proc.Amer.Math.Soc.*, 125 (2): 339-345.

:

*

.2006/6/4

2005/9/6