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ABSTRACT 

Let R be a commutative ring with 1, and M is a unitary R-module. A submodule N of M is called quasi-
invertible if Hom(M/N, M)=0,and M is said to be quasi-Dedekind module if every non-zero submodule of M is 
quasi-invertible. In this paper, we continue the study of quasi-Dedekind modules that was started by the authors. 

In particular, we prove that the ring of endomorphisms of a uniform quasi-Dedekind module is an integral 
domain. We also study quasi-Dedekind modules over Dedekind ring, we prove, among other things, that the only 
quasi-Dedekind dualizable Z-module is Z. The main result of the paper shows that every uniform faithful quasi-
Dedekind R-module is isomorphic to a submodule of Q(R). 

KEYWORDS: Dedekind domain, quasi-Dedekind module, ring of endomorphisms, dualizable 

module, field of quotient. 

 
INTRODUCTION 

 

Let R be a commutative ring with 1, and let M be a 

unitary (left) R-module. Let N be a submodule of M, 

following Naoum and Mijbass (in press), we say that N is 

a quasi-invertible submodule if Hom(M/N, M)=0,and M 

is said to be quasi-Dedekind module if each non-zero 

submodule of M is quasi-invertible. In Naoum and 

Mijbass (in press), the basic properties of quasi-invertible 

submodules are developed. In Naoum and Mijbass (in 

press), quasi-Dedekind R-modules are studied. It is 

proved that an R-module M is quasi-Dedekind iff each 

non-zero endomorphism is a monomorphism. Moreover, 

if R is an integral domain and Q(R) is the field of 

quotients of R, then every R-submodule of Q(R) is 

uniform quasi-Dedekind module. 

In this paper, we continue the study of quasi-

Dedekind modules.  

§1: The R-module Q(R) 

Let R be an integral domain, and as usual Q(R) is the 

field of quotients of R. It was shown in Naoum and 

Mijbass (in press) that every R –submodule of Q(R) is a 

quasi-Dedekind R-module. In this section, we look at 

other properties of such kind of modules, in particular, 

their rings of endomorphisms. 

Recall that an R-submodule N of the module M is 

called invariant submodule if ∀ f∈ End(M), f(N)⊆ N. 

We start by the following: 

 

Lemma 1.1: 

Let R be an integral domain. The zero R-submodule 

of Q(R) and Q(R) are the only invariant R-submodules of 

Q(R). 

Proof: 

Let N be a non-zero proper R-submodule of Q(R). 

Since N≠ Q(R), there exists x∈ Q(R) and x∉N. Now let 

0≠ b∈ N, define f: Q(R)→ Q(R) as follows: f(y)=xyb-1, 

∀ y∈ Q(R). It is clear that f is an R-homomorphism and 

f(b)=x. Thus f(N)⊄  N and hence N is not an invariant R-
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submodule of Q(R). 

 

Proposition 1.2: 

Let R be an integral domain. If N is a non-zero R-

submodule of Q(R), then
^
N =Q(R) and either N=Q(R) or 

N =QR), where
^
N is the injective hull of N and N is the 

quasi-injective hull of N. 

Proof: 

It can be easily seen that N is an essential R-

submodule of Q(R), thus
^
N =Q(R), [Goodearl, 1976, 

Prop. 1.7, P. 20]. Suppose that N ≠ Q(R) and N ≠ Q(R). 

By Lemma 1.1, N  is not an invariant R-submodule of 

Q(R). This is a contradiction [Goodearl, 1976, Prop. 2.13, 

P. 48]. Therefore N =Q(R). 

 

Proposition 1.3: 

Let R be an integral domain. If N is an R-submodule 

of Q(R), then )(NEnd R  is isomorphic to a subring of the 

field Q(R), and thus is a commutative ring. 

Proof: 

The result is trivial if N=(0). Thus we may assume 

N ≠ (0). R is an integral domain, thus 
^
R =Q(R), where 

^
R is the injective hull of R, [Sharpe and Vamos, 1972, 

Prop. 2.7, p. 34]. It can be easily seen that N is an 

essential R-submodule of Q(R), thus 
^
N =Q(R), 

[Goodearl, 1976, Prop. 1.7, P. 20]. Let f∈ )(NEnd R . 

Since Q(R) is an injective R-module, f can be extended to 

an R-homomorphism f : Q(R)→ Q(R) such that f o i=f, 

where i: N→ Q(R) is the inclusion. That is, the following 

diagram is commutative. 

 

 

 

f  

 

We claim that f  is unique. Let g : Q(R) →  Q(R) be 

such that g | N= f | N. Since Q(R) is a quasi-Dedekind 

R-module [Naoum and Mijbass, in Press, Examples 

1.4(1)], then N is a quasi-invertible R-submodule of 

Q(R). Thus, since g | N= f | N, then by [Naoum and 

Mijbass, in Press, Th. 1.13], g = f . Defineϕ : 

End(N)→End(Q(R)) such thatϕ (f)= f . Let f, g∈  

End(N). ϕ (g +f)= fg + . Since g + f | N= fg + | N, 

then g + f = fg +  [Naoum and Mijbass, in Press, Th. 

1.13]. Thusϕ (g + f)= g + f =ϕ (g)+ ϕ (f). ϕ (go f)= 

fg o . Since fg o | N= g o f | N, then fg o = g o f  

[Naoum and Mijbass, in Press, Th.1.13]. Hence 

ϕ (go f)= g o f =ϕ (g)o ϕ (f).Therefore ϕ  is a ring 

homomorphism. We claim that ϕ  is one-to-one. In fact, 

letϕ (f)=0, thus f =0. Hence f | N= f =0. Therefore 

End(N) is isomorphic to a subring of End(Q(R)). But 

End(Q(R)) ≅ Q(R), [Kasch, 1982, Lemma 3.7.3, P. 70], 

then End(N) is isomorphic to a subring of the field Q(R), 

and End(N) is a commutative ring. 

If M and N are submodules of Q(R), we put [N: 

M]={x∈ Q(R) | xM⊆N}. It is clear that [N: M] is an R-

submodule of Q(R). 

 

Proposition 1.4: 

Let M and N be R-submodules of Q(R). If M contains 

R, then ),( NMHomR  ≅ [N:M] and hence is a quasi-

Dedekind R-module. 

Proof: 

Let f∈ ),( NMHomR  and f(1)=x. Thus if a/b∈ M, 

then b f(a/b)=f(b. a/b)=f(a)=af(1)= ax, hence f(a/b)=a/b. 

x. Therefore f is multiplication by x. Now defined 

ϕ : ),( NMHomR → [N: M] as follows: ϕ (f)=f(1). It is 

easy to check that ϕ  is an R-isomorphism. Thus 

),( NMHomR is R-isomorphic to an R-submodule of 

Q(R). By [Naoum and Mijbass, in Press, Example 

N 
i 

Q(R) 

N 

f 

i 

Q (R) 
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1.4(1)], ),( NMHomR  is a quasi-Dedekind R-module. 

As a special case of Prop.1.4 we have: 

Corollary 1.5: 

Let L be an R-submodule of Q(R). If L contains R, 

then ),( LLHomR ≅  {x∈ Q(R) | x L⊆ L} and hence is a 

quasi-Dedekind R-module. 

 

§2: The Rings of Endomorphisms of Uniform Quasi-

Dedekind R-Modules 

In the last section we studied some aspects of the 

rings of endomorphisms of submodules of Q(R). In this 

section we extend these results for arbitrary uniform 

quasi-Dedekind R-modules. We do this by proving a 

strong and useful theorem. It shows that every uniform 

faithful quasi-Dedekind R-module is “essentially” a 

submodule of Q(R) which contains R. 

We start by the following easy proposition. It serves 

as a motivation for later results.  

 

Proposition 2.1: 

If M is a quasi-Dedekind R-module then )(MEnd R  

has no zero divisors. 

Proof: 

Let f, g∈ )(MEnd R , where f and g are non-zero R-

homomorphisms. Thus, there exist m, m′ ∈ M such that 

f(m)=x≠ 0 and g(m′)=y≠ 0, where x, y∈ M. By [Naoum 

and Mijbass, in Press, Th. 1.5], f and g are R-

monomorphisms. Hence; fo g(m′)=f(y) ≠ 0 and 

g o f(m)=g(x) ≠ 0. Therefore, )(MEnd R  has no zero 

divisors. 

We have seen in [Naoum and Mijbass (in Press), 

Examples 1.4(3)] that if R is an integral domain then 

Q(R) is a faithful quasi-Dedekind R-module. And we 

have seen in [Naoum and Mijbass (in Press), Corollary 

2.3] that if M is a faithful dualizable R-module, then M is 

isomorphic to an ideal of R. And this result is false if M 

is not dualizable (Q, the set of all rational numbers, is not 

isomorphic to an ideal of Z). The following theorem 

shows that every faithful quasi-Dedekind R-module is 

actually a submodule of Q(R). First we need a lemma. 

 

Lemma 2.2: 

Let R be an integral domain. If M is a torsion-free 

uniform R-module, then S-1M is a torsion-free uniform  

S-1R-module for every multiplicative closed subset S of R 

and hence is an indecomposable S-1R-module. 

Proof:  

It is clear that S-1M is a torsion-free S-1R-module. 

Since M is a torsion-free R-module, then M is a prime R-

module. By [Naoum and Mijbass, in Press, Lemma 4.4], 

S-1M is a uniform S-1R-module and thus is an 

indecomposable S-1R-module. 

 

Theorem 2.3: 

An R-module M is a uniform faithful quasi-Dedekind 

R-module if and only if R is an integral domain and M is 

R-isomorphic to a submodule of Q(R) containing R. 

Proof: 

Assume that M is a faithful quasi-Dedekind R-module. 

By [Naoum and Mijbass (in Press), Prop. 1.7], M is a 

prime R-module. Thus, M is a torsion-free R-module. And 

(M)=0 is a prime ideal of R, [Naoum and Mijbass (in 

Press), Corollary 1.8], hence; R is an integral domain. For 

all x ≠ 0, x ∈ M, Rx≅ R as R-modules, thus, there exists 

an R-isomorphism h: S-1Rx→ Q(R)= S-1R, where S=R-

{0}. By [Naoum and Mijbass, in Press Prop. 1.7], M is a 

uniform torsion-free R-module, then S-1M is a uniform 

torsion-free Q(R)-module (by Lemma 2.2). But Q(R) is a 

field, hence; S-1M is a vector space over Q(R). Since S-1M 

is a uniform torsion-free Q(R)-module, then S-1M is a 1-
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dimensional Q(R)-vector space, hence; S-1M≅ Q(R) as 

Q(R)-modules. Since R is an integral domain, then R is a 

subring of Q(R) and every Q(R)-homomorphism is an R-

homomorphism. Thus, there exists an R-isomorphism ϕ : 

S-1M→ Q(R). Let f= h-1 o ϕ , then f: S-1M→  S-1Rx is an 

R-isomorphism. Let ψ : M→  S-1M be the canonical R-

homomorphism. Since M is a torsion-free R-module, then 

ψ  is an R-monomorphism. Now ho fo ψ : M→  S-1M →  

S-1Rx→ Q(R) is an R-monomorphism which maps x to 1. 

Therefore, M is R-isomorphic to a submodule of Q(R) 

containing R. 

The converse, since R is an integral domain, then Q(R) is 

a quasi-Dedekind R-module [Naoum and Mijbass (in Press), 

Example 1.4(3)]. By [Naoum and Mijbass (in Press), 

Corollary 3.15], every R-submodule of Q(R) is a quasi-

Dedekind R-module. Thus, M is a uniform faithful quasi-

Dedekind R-module. 

We are now in a position to state and prove the main 

result of this section. 

 

Theorem 2.4: 

Let M be a uniform quasi-Dedekind R-module and 

E= End R  (M). Then E is an integral domain and 

HomR (M, M) is a quasi-Dedekind R-module. 

Proof: 

Put R =R/ann(M). Since M is a uniform quasi-

Dedekind R-module, then M is a uniform faithful quasi-

Dedekind R -module [Naoum and Mijbass (in Press), 

Prop. 1.2]. By Th. 2.3, R  is an integral domain and M is 

R -isomorphic to a submodule of Q( R ) containing R . 

Thus, by Prop. 1.3, E = End R
_  (M) is an integral domain. 

By Corollary 1.5, HomR
_  (M, M) is R-isomorphic to an 

R -submodule of Q( R ). Since Q( R ) is a quasi-

Dedekind R -module, thus by [Naoum and Mijbass (in 

Press), Corollary 3.15], HomR
_  (M, M) is a quasi-

Dedekind R -module. Now since End R (M)= End R
_  (M) 

(Kasch, 1982), Example (3), P.51, then E is an integral 

domain. Also since annR (M)= annR ( HomR  (M, M)) 

and HomR (M, M)= HomR
_  (M, M), (Kasch, 1982), 

Example (3), P.51, then by [Naoum and Mijbass (in 

Press), Prop. 1.2], HomR  (M, M) is a quasi-Dedekind R-

module. 

 

Proposition 2.5: 

Let R be a Noetherian ring and M is a uniform faithful 

quasi-Dedekind R-module. If M is a finitely generated R-

module, then M is R-isomorphic to an ideal of R. 

Proof:  

By Th. 2.4, End R  (M) is an integral domain. Since M 

is finitely generated and End R  (M) is an integral domain, 

then by [Vasconcelos, 1970, Th. 1.1], M is R-isomorphic 

to an ideal of R. 

It is known that if M is a prime module then M is also 

prime [(Al-Alwan, 1993), Prop. 3.5, Chapter one]. 

However, 
^

M may not be prime. The following lemma 

gives a necessary and sufficient condition for 
^

M to be a 

prime module. 

 

Lemma 2.6: 

Let M be a prime R-module. Then 
^

M is a prime R-

module if and only if J ( )(
^

MEnd R )=0. 

Proof: 

Assume 
^

M is a prime R-module. Let f∈ J  

( End R (
^

M )) and f≠ 0, then kerf is an essential R-

submodule of 
^

M [Goodearl, 1976, Th. 2.16, P.49]. But 

this contradicts with [Naoum and Mijbass (in Press), 

Lemma 3.1]. 

The converse, let 0≠ x∈
^

M , then ann(
^

M )⊆  ann(x). 

Since M is an essential R-submodule of 
^

M , there exists 

r∈ R such that 0≠ rx∈ M. Now, let z∈ ann(x), then 
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z∈ ann(rx). Since M is a prime module and 0≠ rx∈  M, 

then z∈ ann(M). Define f: 
^

M →
^

M as follows: f(m)=zm, 

for all m∈
^

M . It is clear that M⊆  kerf, thus kerf is an 

essential submodule of 
^

M . Therefore f∈ J ( End R  

(
^

M )) [Goodearl, 1976, Th. 2.16, P. 49] and hence f=0. 

This means z
^

M =0 and z∈ ann(
^

M ). Hence; 
^

M is a 

prime R-module. 

Let us note that if M is a quasi-Dedekind R-module, 

End R  (M) may not be a field. Consider the following 

example. 

 

Example 2.7: 

Let Z as a Z-module. Since Z is an integral domain, 

then Z is a quasi-Dedekind Z-module [Naoum and 

Mijbass (in Press), Examples 1.4(1)]. End Z (Z)≅ Z, but Z 

is not a field. 

 

Proposition 2.8: 

If M is a uniform quasi-Dedekind R-module and 

ann(M)=ann(
^

M ), then End R (
^

M ) is a field. 

Proof: 

By [Naoum and Mijbass, in Press, Corollary 3.2], 
^

M  

is a uniform quasi-Dedekind R-module. By [Naoum and 

Mijbass (in Press), Prop. 1.7], M and 
^

M  are prime and 

hence J ( End R (
^

M ))=0 (Lemma 2.6). By [Goodearl, 

1976, Th. 2.16, P. 49], End R (
^

M ) is regular. Since
^

M is 

uniform quasi-Dedekind, then by Th. 3.1 End R (
^

M ) is an 

integral domain. Thus End R (
^

M ) is a regular integral 

domain and hence is a field. 

 

Corollary 2.9: 

Let M be a uniform faithful quasi-Dedekind R-

module, then End R (
^

M ) is a field. 

Proof: 

Since M is a uniform faithful quasi-Dedekind R-

module, then 
^

M  is a uniform faithful quasi-Dedekind R-

module [Naoum and Mijbass, in Press, Corollary 3.18]. 

By Prop. 2.8, End R (
^

M ) is a field. 

Theorem 2.10: 

If M is a uniform quasi-Dedekind R-module, then 

End R  ( M ) is a field.  

Proof: 

By [Naoum and Mijbass (in Press), Corollary 3.16], 

M is a uniform quasi-Dedekind R-module. By Th. 2.4, 

End R ( M ) is an integral domain. Since M is a quasi-

Dedekind R-module, then J ( End R ( M ))=0 [Naoum and 

Mijbass, in Press, Corollary 3.5]. Hence End R ( M ) is a 

regular ring [Goodearl, 1976, Th. 2.16, P. 49].Thus, 

End R ( M ) is a regular integral domain, and hence; 

End R ( M ) is a field. 

For an R-module M, there exists an obvious ring 

monomorphism ϕ : R/ann(M)→  End R (M). Thus, one 

can consider R/ann(M) as a subring of End R (M). 

 

Proposition 2.11: 

If M is a quasi-Dedekind R-module and E= End R (M), 

then M is a faithful quasi-Dedekind E-module. 

Proof: 

Put R =R/ann(M) and E = End R (M). By [Naoum 

and Mijbass (in Press), Prop. 1.2], M is a faithful 

quasi-Dedekind R -module. Since R is embedded in 

E , then every E -homomorphism is R -

homomorphism. Since M is a quasi-Dedekind R -

module, then every non-zero E -homomorphism is E -

monomorphism [Naoum and Mijbass, in Press, Th. 

1.5]. Thus, M is a faithful quasi-Dedekind E -module. 

But E= E  [(Kasch, 1982), Example (3),P. 5.1], hence 

M is a faithful quasi-Dedekind E-module. 

Recall that an R-module M which is finitely generated 

over )(MEnd R is said to be finendo, (Faith, 1972). 
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Corollary 2.12: 

If M is a uniform quasi-Dedekind R-module R-

module and ann(M)= Ann(
^

M ) and E= )(
^

MEnd R , then 
^

M  is a cyclic E-module and hence is finendo. 

Proof: 

By Prop. 2.8, E is a field. By [Naoum and Mijbass (in 

Press), Corollary 3.12], 
^

M is a faithful quasi-Dedekind 

R-module and hence 
^

M is a faithful quasi-Dedekind E-

module (by Prop. 2.12). Thus, by [Naoum and Mijbass, in 

Press, Remark 1.3], 
^

M is an indecomposable E-module. 

But E is a field, hence 
^

M ≅ E as E-modules. 

 

Corollary 2.13: 

Let M be an R-module and E= )(MEnd R . If M is a 

uniform quasi-Dedekind R-module, then M  is a cyclic 

E-module and hence is finendo. 

Proof: 

By Th. 2.10, E is a field. And by [Naoum and Mijbass, 

in Press, Corollary 3.17], M is a uniform quasi-Dedekind 

R-module. Thus, M is a faithful quasi-Dedekind E-module 

(Prop. 2.12) and hence by [Naoum and Mijbass, in Press, 

Remark 1.3], M is an indecomposable E-module. But E is a 

field, hence M ≅  E as E-modules. 

  

Proposition 2.14: 

Let M and N be uniform quasi-Dedekind R-modules. If 

ann(M)=ann(N), then ),( NMHomR  is a quasi-Dedekind R-

module. 

Proof: 

Put R =R/ann(M). By [Naoum and Mijbass, in Press, 

Prop. 1.2] M and N are uniform faithful quasi-Dedekind  

R -modules. By Th. 2.3, M and N are R -isomorphic to 

submodules A and B of Q( R ) that contain R . Thus 

),( BAHomR is a quasi-Dedekind R -module (by Prop. 1.4). 

Since ),( NMHomR ≅ ),( BAHomR , then ),( NMHomR  is 

a quasi-Dedekind R -module. But ),( NMHomR  = 

),( NMHomR , [(Kasch, 1982), Example(3), P.51], thus 

),( NMHomR  is a quasi-Dedekind R -module. Since 

annR ( ),( NMHomR )= )(NannR , then by [Naoum and 

Mijbass, in Press, Prop. 1.2] ),( NMHomR is a quasi-

Dedekind R-module. 

 

Corollary 2.15: 

If M is a uniform faithful quasi-Dedekind R-module, 

then M*= ),( RMHomR is a quasi-Dedekind R-module. 

Proof: 

Since M is a faithful quasi-Dedekind R-module, then 

ann(M)=(0) is a prime ideal of R [Naoum and Mijbass, in 

Press, Corollary 1.8], and thus R is an integral domain. 

By [Naoum and Mijbass, in Press, Examples 1.4(1)], R is 

a faithful quasi-Dedekind R-module. Thus, ),( RMHomR  

is a quasi-Dedekind R-module (Prop. 2.15). 

We saw that Z is a quasi-Dedekind Z-module. It is clear 

that Z =
^
Z =Q(Z) and Q=Q(Z), where Q is the set of all 

rational numbers. This fact is true for all uniform faithful 

quasi-Dedekind R-modules, as the next theorem shows. 

 

Theorem 2.16: 

If M is a uniform quasi-Dedekind R-module and 

R =R/ann(M), then 
^

M ≅ Q( R ) as R -modules and 

either M≅ Q( R ) or M ≅ Q( R ) as R -modules.  

Proof: 

By [Naoum and Mijbass, in Press, Prop. 1.2], M is a 

uniform faithful quasi-Dedekind R -module. Then by Th. 

2.3, R is an integral domain and M is R -isomorphic to an 

R -submodule L of Q( R ) containing R . Thus
^

M ≅ Q( R ) 

and either M≅ Q( R ) or M ≅ Q( R ) (by Prop. 1.2). 

 

Corollary 2.17: 

If M is a uniform faithful quasi-Dedekind R-module, 
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then
^

M ≅ Q(R) as R-modules and either M ≅ Q(R) or 

M ≅ Q(R).  

The condition on the annihilator in Corollary 2.17 is 

not superfluous. Consider the following example. 

 

Example 2.18: 

Let M= Z2 as a Z-module. Z2 is a quasi-Dedekind Z-

module and ann(Z2)= 2Z≠ (0).
^

M  = Z ∞
2 is not isomorphic 

to Q(Z)=Q. 

The converse of Theorem 2.16 is not true as the 

following example shows. 

 

Example 2.19:  

Consider M=Z4 as a Z4-module. It is clear that 
^

M =Q(Z4)=Z4. But Z4 is not a quasi-Dedekind Z4-

module. 

In the following theorem we give a condition under 

which the converse of Theorem 2.16 is true. 

 

Theorem 2.20: 

Let M be an R-module and R =R/ann(M). M is a 

uniform quasi-Dedekind R-module if and only if ann(M) 

is a prime ideal of R and 
^

M ≅ Q( R ) as R -modules. 

Proof: 

Assume that M is a uniform quasi-Dedekind R-

module. By [Naoum and Mijbass, in Press, Corollary 

1.8], ann(M) is a prime ideal of R and by Th. 2.17, 
^

M ≅ Q( R ) as R -modules. 

The converse, since ann(M) is a prime ideal of R, 

then R is an integral domain. Thus, Q( R ) is a uniform 

quasi-Dedekind R -module [Naoum and Mijbass, in 

Press, Example 1.4(3)]. Thus, 
^

M  is a uniform quasi-

Dedekind R -module. Since M is an R -submodule of 
^

M , then M is a uniform quasi-Dedekind R -module 

[Naoum and Mijbass, on Press, Corollary 3.16]. And by 

[Naoum and Mijbass, in Press, Prop. 1.2], M is a uniform 

quasi-Dedekind R-module. 

 

Corollary 2.21:  

M is a uniform faithful quasi-Dedekind R-module if 

and only if R is an integral domain and 
^

M ≅ Q(R) as R-

modules. 

Proposition 2.22:  

Let M be a uniform quasi-Dedekind R-module. If M 

is a projective R-module, then M is a multiplication R-

module. 

Proof: 

By Th. 2.4, )(MEnd R is commutative. And since M is 

projective, then M is a multiplication R-module [(Naoum, 

1991), Prop. 2.1]. 

 

§3: Quasi-Dedekind Modules Over Dedekind 

Domains 

Recall that an integral domain R is called a Dedekind 

domain if every non-zero ideal of R is invertible. It is 

known that every non-zero prime ideal of a Dedekind 

domain is maximal (Larsen and McCarthy, 1971). 

 Our main result of this section states that every 

dualizable quasi-Dedekind module over a Dedekind 

domain is a finitely generated faithful projective and a 

mutiplication module, and the only dualizable quasi-

Dedekind Z-module is Z. 

 

Proposition 3.1: 

Let R be a Dedekind domain and let M be an R-

module. Then M is a finitely generated uniform faithful 

quasi-Dedekind R-module if and only if M is isomorphic 

to an ideal of R. 

Proof: 

Assume that M is a finitely generated uniform faithful 
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quasi- Dedekind R-module. Since R is a Dedekind 

domain, then R is Noetherian. By Prop. 2.5, M is R-

isomorphic to an ideal of R. 

The converse, since R is an integral domain, then R is 

a quasi-Dedekind R-module [Naoum and Mijbass, in 

Press, Examples 1.4(1)]. By [Naoum and Mijbass, in 

Press, Examples 1.4(2)], every ideal of R is a quasi-

Dedekind R-module. Since R is Dedekind domain, then R 

is Noetherian. Thus every ideal of R is a finitely 

generated faithful ideal of R. Since M is isomorphic to an 

ideal of R, then M is a finitely generated uniform faithful 

quasi-Dedekind R-module. 

 

Corollary 3.2: 

Let R be a Dedekind domain. Then every finitely 

generated uniform faithful quasi-Dedekind R-module is a 

projective and a multiplication module. 

Proof: 

By Prop. 3.1, M is isomorphic to an ideal of R. Since 

R is a Dedekind domain, then every non-zero ideal of R 

is invertible and hence is projective, [Naoum and Al-

Alwan, 1996), Th. 4.24, P.125]. Therefore, M is 

projective. By Prop. 2.22, M is a multiplication module. 

 

Theorem 3.3: 

Let R be a Dedekind domain and M is an R-module. 

If M is a uniform faithful quasi-Dedekind R-module, then 

M is a flat R-module. 

Proof: 

By [Naoum and Mijbass, in Press, Corollary 3.16], 

every R-submodule of M is a uniform quasi-Dedekind R-

module. And by Corollary 3.2, every finitely generated 

R-submodule of M is flat, thus by [Rotman, 1979, 

Corollary 3.49, P.86], M is flat. 

If R is not a Dedekind domain, a faithful quasi-

Dedekind R-module may not be flat. Consider the 

following example. 

 

Example 3.4: 

Let R=Z[x]. R is an integral domain, but R is not a 

Dedekind domain. In fact, (x) is a prime ideal of R, but 

(x) is not a maximal ideal of R. By [Naoum and Mijbass, 

in Press, Examples 1.4(3)], Q(R) is a quasi-Dedekind R-

module and by [Naoum and Mijbass, in Press, Corollary 

2.7] N=(1, x/2) is a quasi-Dedekind R-submodule of 

Q(R) containing R. Suppose that N is a flat R-module. 

Note that (-x).1+2.x/2=0. Thus, by [Larsen and 

McCarthy, 1971, Ex. 13(b), P.33] there exist elements f1, 

f2, f3,…, fk ∈N and elements b ji ∈R, i=1, 2, j=1, 2,…,k 

such that -x b j1  +2. b j2 =0, j=1, 2,…, k        …(1) 

and 

 

1= ∑
=

k

j
jf

1
b j1                                                      …(2) 

 

From(1),we get xb j1 =2 b j2 ,and hence b j1 =2 l j1  and 

b j2 =xγ 2j , where j=1,2,…,k and l j1 , γ 2j ∈Z[x]. Since 

f j ∈N,j=1,2,…,k, then f j = h j + g j . x/2=(2 h j + x g j ) /2, 

where, h j , g j ∈Z[x]. Thus1= ∑
=

k

j 1
[(2 h j +x g j )/2].2 l j1 = 

∑
=

k

j 1
( 2 h j +x g j ) l j1 =2 ∑

=

k

j 1
h j l j1 +x ∑

=

k

j 1
g j l j1 = 2 α j  

+ x β j , where α j = ∑
=

k

j 1
h j l j1 , β j = ∑

=

k

j 1
g j l j1 . This is 

impossible because there is no u∈Z[x] –{0} such that u(1-(2 

α j + x β j ))=0. Therefore, N is not a flat R-module. 

 

Proposition 3.5: 

Let R be a Dedekind domain and M is an R-module 

such that ann(M)≠ 0. Then M is a quasi-Dedekind R-

module if and only if ann(M) is a maximal ideal of R and 

M≅ R/ann(M) as R-modules. 

Proof: 

Suppose that M is a quasi-Dedekind R-module. Thus, 
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by [Naoum and Mijbass, in Press, Corollary 1.8], ann(M) 

is a prime ideal of R and hence ann(M) is a maximal ideal 

of R, [(Larsen and McCarthy, 1971), corollary 6.17, 136]. 

Whence R/ann(M) is a field and hence is self-injective. 

By [Naoum and Mijbass, in Press, Prop. 3.9], 

M≅ R/ann(M). 

The converse follows from [Naoum and Mijbass, in 

Press, Prop. 3.9]. 

In the following proposition, we characterize 

dualizable quasi-Dedekind modules over Dedekind 

domains. 

 

Proposition 3.6: 

Let R be a Dedekind domain and M is an R-module. 

Then the following statements are equivalent:-  

1- M is a dualizable quasi-Dedekind module. 

2- M is isomorphic to an ideal of R and hence is a 

finitely generated projective module. 

3- M is a finitely generated faithful multiplication 

module. 

4- M is a dualizable Dedekind module. 

Proof:  

(1)⇒ (2). By [Naoum and Mijbass, in Press, 

Corollary 2.3], M is isomorphic to an ideal of R. Since R 

is a Dedekind domain, then every non-zero ideal of R is 

invertible and hence is finitely generated and projective 

[(Rotman, 1979), Th. 4.24, P. 125]. Therefore, M is a 

finitely generated projective module. 

(2) ⇒ (3). By [(Smith, 1969), Th. 1], M is a finitely 

generated faithful multiplication module. 

(3) ⇒ (4). By [(Smith, 1988), Th. 11], M is 

projective and hence M is dualizable. Since R is a 

Dedekind domain, then by [(Al-Alwan, 1993), Th. 4.3, 

Chapter two], M is a Dedekind module. 

(4) ⇒ (1). By [Naoum and Mijbass, in Press, 

Examples 1.4(5)], M is a quasi-Dedekind module. 

 

Corollary 3.7: 

Every dualizable quasi-Dedekind Z-module is cyclic, 

and is isomorphic to Z. 
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  كاندية المنتظمةيالمقاسات شبه الديد
 

  * عادل غسان نعوم، وعلي سبع مجباس
 

  ملخص

 عكوس اذا كان M في N ن المقاس الجزئيايقال . R مقاسا وحدويا على M وليكن ،حلقة تبادلية ذات عنصر أحادي Rلتكن
0=Hom (M/N, M) . ن المقاساويقال M  نتابع  ،في هذا البحث. ذا كان كل مقاس جزئي غير صفري عكوساإشبه ديديكاندي

نبرهن بصورة خاصة أن حلقة تشاكلات المقاس النظامي شبه و. الباحثان دراسة هذا الصنف من المقاسات التي بداها
ذا إبين أمور اخرى، أنه  نبرهن،و ،على الحلقات الديديكاندية كانديةيكما ندرس المقاسات شبه الديد ،الديديكاندي تكون ساحة

النتيجة الرئيسة في البحث تبين أن كل مقاس مخلص نظامي . Z≈M نإف *M≠0 وكان Z مقاسا شبه ديديكاندي على M كان
  .Q(R) يكون متشاكلا مع مقاس جزئي من R شبه ديديكاندي على
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