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Uniform Quasi-Dedekind Modules
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ABSTRACT

Let R be a commutative ring with 1, and M is a unitary R-module. A submodule N of M is called quasi-
invertible if Hom(M/N, M)=0,and M is said to be quasi-Dedekind module if every non-zero submodule of M is
quasi-invertible. In this paper, we continue the study of quasi-Dedekind modules that was started by the authors.

In particular, we prove that the ring of endomorphisms of a uniform quasi-Dedekind module is an integral
domain. We also study quasi-Dedekind modules over Dedekind ring, we prove, among other things, that the only
quasi-Dedekind dualizable Z-module is Z. The main result of the paper shows that every uniform faithful quasi-
Dedekind R-module is isomorphic to a submodule of Q(R).

KEYWORDS: Dedekind domain, quasi-Dedekind module, ring of endomorphisms, dualizable

module, field of quotient.

INTRODUCTION §1: The R-module Q(R)

Let R be an integral domain, and as usual Q(R) is the
Let R be a commutative ring with 1, and let M be a
field of quotients of R. It was shown in Naoum and
unitary (left) R-module. Let N be a submodule of M,
Mijbass (in press) that every R —submodule of Q(R) is a
following Naoum and Mijbass (in press), we say that N is
quasi-Dedekind R-module. In this section, we look at
a quasi-invertible submodule if Hom(M/N, M)=0,and M
other properties of such kind of modules, in particular,
is said to be quasi-Dedekind module if each non-zero
their rings of endomorphisms.
submodule of M is quasi-invertible. In Naoum and
Recall that an R-submodule N of the module M is
Mijbass (in press), the basic properties of quasi-invertible
called invariant submodule if ¥V f& End(M), f(N)cN.
submodules are developed. In Naoum and Mijbass (in
We start by the following:
press), quasi-Dedekind R-modules are studied. It is

proved that an R-module M is quasi-Dedekind iff each
Lemma 1.1:
non-zero endomorphism is a monomorphism. Moreover,
Let R be an integral domain. The zero R-submodule
if R is an integral domain and Q(R) is the field of
of Q(R) and Q(R) are the only invariant R-submodules of

Q(R).

Proof:

quotients of R, then every R-submodule of Q(R) is
uniform quasi-Dedekind module.

In this paper, we continue the study of quasi-
Let N be a non-zero proper R-submodule of Q(R).
Dedekind modules.
Since N # Q(R), there exists x € Q(R) and x & N. Now let

* Department of Mathematics, Faculty of Science, University 0#be N, define f: Q(R)—» Q(R) as follows: f(y)=xyb’l,
of Baghdad, and Department of Mathematics, Faculty of
Science, University of Tikrit, Iraq. Received on 6/2/2003
and Accepted for Publication on 20/7/2004. f(b)=x. Thus f(N) ¢ N and hence N is not an invariant R-

v ye Q(R). It is clear that f is an R-homomorphism and
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submodule of Q(R).

Proposition 1.2:

Let R be an integral domain. If N is a non-zero R-
submodule of Q(R), then I:l =Q(R) and either N=Q(R) or
N =QR), where ICI is the injective hull of N and N is the
quasi-injective hull of N.

Proof:

It can be easily seen ;Lhat N is an essential R-
submodule of Q(R), thus N =Q(R), [Goodearl, 1976,
Prop. 1.7, P. 20]. Suppose that N # Q(R) and N # Q(R).
By Lemma 1.1, N is not an invariant R-submodule of
Q(R). This is a contradiction [Goodearl, 1976, Prop. 2.13,
P. 48]. Therefore N =Q(R).

Proposition 1.3:

Let R be an integral domain. If N is an R-submodule
of Q(R), then Endg(N) is isomorphic to a subring of the
field Q(R), and thus is a commutative ring.

Proof:

The result is trivial if N=(0). Thus we may assume
N=(0). R is an integral domain, thus I?Q=Q(R), where
I%is the injective hull of R, [Sharpe and Vamos, 1972,
Prop. 2.7, p. 34]. It can be easily seen that N is an
essential R-submodule of Q(R), thus ICI =Q(R),
[Goodearl, 1976, Prop. 1.7, P. 20]. Let f€ Endg(N).
Since Q(R) is an injective R-module, f can be extended to
an R-homomorphism f : Q(R) - Q(R) such that f oi=f,
where i: N — Q(R) is the inclusion. That is, the following

diagram is commutative.
N

f l

N

il

Q(R)

i

» OR)
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We claim that f is unique. Let §: QR) - Q(R) be
such that §| N:T| N. Since Q(R) is a quasi-Dedekind
R-module [Naoum and Mijbass, in Press, Examples
1.4(1)], then N is a quasi-invertible R-submodule of
Q(R). Thus, sinceg| N=f| N, then by [Naoum and
Mijbass, in Press, Th. 1.13], §=?. Define ¢ :
End(N) — End(Q(R)) such thate (f)= ? Let f, ge
End(N). (g +)=g+f. Since g+f| N=g+f| N,
thenﬁ-ﬁ-?:gqt_f [Naoum and Mijbass, in Press, Th.
1L13]. Thus@(g + D= g+ =@ @)+ @D. o(goh=

gof. Sincegof | N=g o f| N, then gef=g 0?
[Naoum and Mijbass, in Press, Th.1.13]. Hence

p(gof)=Q o T:¢(g)o @ (f).Therefore ¢ is a ring
homomorphism. We claim that ¢ is one-to-one. In fact,
let @ (£)=0, thus ?:O. Hence ?| N= f =0. Therefore
End(N) is isomorphic to a subring of End(Q(R)). But
End(Q(R)) =Q(R), [Kasch, 1982, Lemma 3.7.3, P. 70],
then End(N) is isomorphic to a subring of the field Q(R),
and End(N) is a commutative ring.

If M and N are submodules of Q(R), we put [N:
M]={xe€ Q(R) | xM C N}. It is clear that [N: M] is an R-
submodule of Q(R).

Proposition 1.4:

Let M and N be R-submodules of Q(R). If M contains
R, then Homg(M,N) =[N:M] and hence is a quasi-
Dedekind R-module.

Proof:

Let fe Homg(M,N) and f(1)=x. Thus if albe M,
then b f(a/b)=f(b. a/b)=f(a)=af(1)= ax, hence f(a/b)=a/b.
Xx. Therefore f is multiplication by x. Now defined
@ :Homg(M,N) — [N: M] as follows: @ ()=f(1). It is
easy to check that ¢ 1is an R-isomorphism. Thus
Homg(M,N)is R-isomorphic to an R-submodule of

Q(R). By [Naoum and Mijbass, in Press, Example
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1.4(1)], Homg(M,N) is a quasi-Dedekind R-module.

As a special case of Prop.1.4 we have:
Corollary 1.5:

Let L be an R-submodule of Q(R). If L contains R,
then Homg(L,L) = {x€ QR)|x LcL} and hence is a

quasi-Dedekind R-module.

§2: The Rings of Endomorphisms of Uniform Quasi-

Dedekind R-Modules

In the last section we studied some aspects of the
rings of endomorphisms of submodules of Q(R). In this
section we extend these results for arbitrary uniform
quasi-Dedekind R-modules. We do this by proving a
strong and useful theorem. It shows that every uniform
faithful quasi-Dedekind R-module is “essentially” a
submodule of Q(R) which contains R.

We start by the following easy proposition. It serves

as a motivation for later results.

Proposition 2.1:

If M is a quasi-Dedekind R-module then Endg(M)
has no zero divisors.
Proof:

Let f, ge Endg(M), where f and g are non-zero R-
homomorphisms. Thus, there exist m, m" € M such that
f(m)=x# 0 and g(m")=y # 0, where x, ye M. By [Naoum
and Mijbass, in Press, Th. 1.5], f and g are R-
monomorphisms. Hence; fog(m')=f(y) #0 and
gof(m)=g(x) #0. Therefore, Endg(M) has no zero
divisors.

We have seen in [Naoum and Mijbass (in Press),
Examples 1.4(3)] that if R is an integral domain then
Q(R) is a faithful quasi-Dedekind R-module. And we
have seen in [Naoum and Mijbass (in Press), Corollary

2.3] that if M is a faithful dualizable R-module, then M is

isomorphic to an ideal of R. And this result is false if M
is not dualizable (Q, the set of all rational numbers, is not
isomorphic to an ideal of Z). The following theorem
shows that every faithful quasi-Dedekind R-module is

actually a submodule of Q(R). First we need a lemma.

Lemma 2.2:

Let R be an integral domain. If M is a torsion-free
uniform R-module, then S is a torsion-free uniform
S'R-module for every multiplicative closed subset S of R
and hence is an indecomposable S R-module.

Proof:

It is clear that S'M is a torsion-free S'R-module.
Since M is a torsion-free R-module, then M is a prime R-
module. By [Naoum and Mijbass, in Press, Lemma 4.4],
S'™ is a uniform S'R-module and thus is an

indecomposable S'R-module.

Theorem 2.3:

An R-module M is a uniform faithful quasi-Dedekind
R-module if and only if R is an integral domain and M is
R-isomorphic to a submodule of Q(R) containing R.
Proof:

Assume that M is a faithful quasi-Dedekind R-module.
By [Naoum and Mijbass (in Press), Prop. 1.7], M is a
prime R-module. Thus, M is a torsion-free R-module. And
(M)=0 is a prime ideal of R, [Naoum and Mijbass (in
Press), Corollary 1.8], hence; R is an integral domain. For
all x #0, x € M, Rx= R as R-modules, thus, there exists
an R-isomorphism h: S'Rx— Q(R)= SR, where S=R-
{0}. By [Naoum and Mijbass, in Press Prop. 1.7], M is a
uniform torsion-free R-module, then S'M is a uniform
torsion-free Q(R)-module (by Lemma 2.2). But Q(R) is a
field, hence; S'M is a vector space over Q(R). Since S'M

is a uniform torsion-free Q(R)-module, then S'M is a 1-
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dimensional Q(R)-vector space, hence; S'TM= Q(R) as
Q(R)-modules. Since R is an integral domain, then R is a
subring of Q(R) and every Q(R)-homomorphism is an R-
homomorphism. Thus, there exists an R-isomorphism ¢ :
S'"™™M - Q(R). Let f=h"o ¢, then f: S'TM— S'Rx is an
R-isomorphism. Let : M— S'M be the canonical R-
homomorphism. Since M is a torsion-free R-module, then
w is an R-monomorphism. Now ho fo y: M— S'M —
S'Rx — Q(R) is an R-monomorphism which maps x to 1.
Therefore, M is R-isomorphic to a submodule of Q(R)
containing R.

The converse, since R is an integral domain, then Q(R) is
a quasi-Dedekind R-module [Naoum and Mijbass (in Press),
Example 1.4(3)]. By [Naoum and Mijbass (in Press),
Corollary 3.15], every R-submodule of Q(R) is a quasi-
Dedekind R-module. Thus, M is a uniform faithful quasi-
Dedekind R-module.

We are now in a position to state and prove the main

result of this section.

Theorem 2.4:

Let M be a uniform quasi-Dedekind R-module and
E=gEndg (M). Then E is an integral domain and
Homg (M, M) is a quasi-Dedekind R-module.

Proof:

Put ﬁzR/ann(M). Since M is a uniform quasi-
Dedekind R-module, then M is a uniform faithful quasi-
Dedekind R -module [Naoum and Mijbass (in Press),
Prop. 1.2]. By Th. 2.3, ﬁ is an integral domain and M is
ﬁ -isomorphic to a submodule of Q(ﬁ) containingﬁ.
Thus, by Prop. 1.3, E=End g (M) is an integral domain.
By Corollary 1.5, Homg (M, M) is R-isomorphic to an
ﬁ -submodule of Q(ﬁ). Since Q(ﬁ) is a quasi-
Dedekind ﬁ—module, thus by [Naoum and Mijbass (in

Press), Corollary 3.15], Homg (M, M) is a quasi-
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Dedekind ﬁ -module. Now since Endg M)=Endg (M)
(Kasch, 1982), Example (3), P.51, then E is an integral
domain. Also since anng M)=anng(Homgr (M, M))
and Homg M, M)=Homg (M, M), (Kasch, 1982),
Example (3), P.51, then by [Naoum and Mijbass (in
Press), Prop. 1.2], Homg (M, M) is a quasi-Dedekind R-

module.

Proposition 2.5:

Let R be a Noetherian ring and M is a uniform faithful
quasi-Dedekind R-module. If M is a finitely generated R-
module, then M is R-isomorphic to an ideal of R.

Proof:

By Th. 2.4, Endg (M) is an integral domain. Since M
is finitely generated and Endg (M) is an integral domain,
then by [Vasconcelos, 1970, Th. 1.1], M is R-isomorphic
to an ideal of R.

It is known that if M is a prime module then M is also
prime [(Al-Alwan, 1993), Prop. 3.5, Chapter one].
However, I\;I may not be prime. The followinAg lemma
gives a necessary and sufficient condition for M to be a

prime module.

Lemma 2.6:

Let M be a prime R-module. Then l\?l is a prime R-
module if and only if J ( End R(l\;l ))=0.
Proof:

Assume I\A/I is a prime R-module. Let fe J
(EndR(“;l )) and f#0, then kerf is an essential R-
submodule of I\;I [Goodearl, 1976, Th. 2.16, P.49]. But
this contradicts with [Naoum and Mijbass (in Press),
Lemma 3.1].

A A

The converse, let 0 x€ M , then ann(M ) < ann(x).

A

Since M is an essential R-submodule of M , there exists

re R such that 0#rxe M. Now, let z€ ann(x), then
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z € ann(rx). Since M is a prime module and 0 # rxe M,
then z € ann(M). Define f: I\;I - l\?l as follows: f(m)=zm,
for all me I\)I . It is clear that M < kerf, thus kerf is an
essential submodule of I\;I . Therefore fe J (Endg
(I\All )) [Goodearl, 1976, Th. 2.16, P. 49] and hence f=0.
This means zl\;l =0 and ze€ ann(l\;l ). Hence; I\;Iis a
prime R-module.

Let us note that if M is a quasi-Dedekind R-module,
Endgr (M) may not be a field. Consider the following

example.

Example 2.7:

Let Z as a Z-module. Since Z is an integral domain,
then Z is a quasi-Dedekind Z-module [Naoum and
Mijbass (in Press), Examples 1.4(1)]. End; (Z2)= Z,but Z

is not a field.

Proposition 2.8:
If M is a uniform quasi-Dedekind R-module and
ann(M)=ann( I\;I ), then Endg ( I\;I ) is a field.
Proof: X
By [Naoum and Mijbass, in Press, Corollary 3.2], M
is a uniform quasi-Dedekind R—module.ABy [Naoum and
Mijbass (in Press), AProp. 1.7, M and M are prime and
hence J (Endg(M )=0 (Lemma 2.6). By [Goodearl,
1976, Th. 2.16, P. 49], Endg (M ) is regular. Since M is
uniform quasi-Dedekind, then byA Th. 3.1 Endg( I\;I ) is an

integral domain. Thus Endgr (M ) is a regular integral

domain and hence is a field.

Corollary 2.9:

Let M be a uniAform faithful quasi-Dedekind R-
module, then Endg (M ) is a field.
Proof:

Since M is a uniform faithful quasi-Dedekind R-

A

module, then M is a uniform faithful quasi-Dedekind R-
module [Naoum and I}dijbass, in Press, Corollary 3.18].
By Prop. 2.8, Endr (M ) is a field.

Theorem 2.10:

If M is a uniform quasi-Dedekind R-module, then
Endg (M) is a field.

Proof:

By [Naoum and Mijbass (in Press), Corollary 3.16],
M is a uniform quasi-Dedekind R-module. By Th. 2.4,
EndR(ﬁ) is an integral domain. Since M is a quasi-
Dedekind R-module, then J ( Endg (M ))=0 [Naoum and
Mijbass, in Press, Corollary 3.5]. Hence Endg (M) isa
regular ring [Goodearl, 1976, Th. 2.16, P. 49].Thus,
EndR(M) is a regular integral domain, and hence;
Endg (M ) is a field.

For an R-module M, there exists an obvious ring
monomorphism ¢ : R/ann(M)— Endg(M). Thus, one

can consider R/ann(M) as a subring of End g (M).

Proposition 2.11:

If M is a quasi-Dedekind R-module and E=End g (M),
then M is a faithful quasi-Dedekind E-module.
Proof:

Put R=R/ann(M) and E= Endg(M). By [Naoum
and Mijbass (in Press), Prop. 1.2], M is a faithful
quasi-Dedekind R -module. Since Ris embedded in
E, then every E-homomorphism is R-
homomorphism. Since M is a quasi-Dedekind R-
module, then every non-zero E -homomorphism is E -
monomorphism [Naoum and Mijbass, in Press, Th.
1.5]. Thus, M is a faithful quasi-Dedekind E -module.
But E=E [(Kasch, 1982), Example (3),P. 5.1], hence
M is a faithful quasi-Dedekind E-module.

Recall that an R-module M which is finitely generated
over Endg(M) is said to be finendo, (Faith, 1972).
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Corollary 2.12:

If M is a uniform quasi-Dedekind R-module R-
module and ann(M)= Ann(l\A/I ) and E= EndR(l\;I), then
I\;I is a cyclic E-module and hence is finendo.

Proof:
By Prop. 2.8, E is a field. By [Naoum and Mijbass (in

Press), Corollary 3.12], M is a faithful quasi-Dedekind

R-module and hence M is a faithful quasi-Dedekind E-
module (by Prop. 2.12). Thus, by [Naoum and Mijbass, in
Press, Remark 1.3], M is an indecomposable E-module.

But E is a field, hence M =E as E-modules.

Corollary 2.13:

Let M be an R-module and E=gndz(M). If M is a
uniform quasi-Dedekind R-module, then M is a cyclic
E-module and hence is finendo.

Proof:

By Th. 2.10, E is a field. And by [Naoum and Mijbass,
in Press, Corollary 3.17], M is a uniform quasi-Dedekind
R-module. Thus, M is a faithful quasi-Dedekind E-module
(Prop. 2.12) and hence by [Naoum and Mijbass, in Press,
Remark 1.3], M is an indecomposable E-module. But E is a

field, hence M = E as E-modules.

Proposition 2.14:

Let M and N be uniform quasi-Dedekind R-modules. If
ann(M)=ann(N), then Homg(M,N) is a quasi-Dedekind R-
module.

Proof:

Put R=R/ann(M). By [Naoum and Mijbass, in Press,
Prop. 1.2] M and N are uniform faithful quasi-Dedekind
R -modules. By Th. 2.3, M and N are R -isomorphic to
submodules A and B of Q(R) that contain R. Thus

Homg (A, B) is a quasi-Dedekind R -module (by Prop. 1.4).

Since Homg(M,N) = Homg(A,B), then Homg(M,N) is
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a quasi-Dedekind R -module. But Homg(M,N) =
Homg(M,N), [(Kasch, 1982), Example(3), P.51], thus
Homgr(M,N) is a quasi-Dedekind R -module. Since
anng (Homgr(M,N) )= anng(N), then by [Naoum and
Mijbass, in Press, Prop. 1.2] Homg(M,N)is a quasi-
Dedekind R-module.

Corollary 2.15:

If M is a uniform faithful quasi-Dedekind R-module,
then M= Homg(M,R) is a quasi-Dedekind R-module.
Proof:

Since M is a faithful quasi-Dedekind R-module, then
ann(M)=(0) is a prime ideal of R [Naoum and Mijbass, in
Press, Corollary 1.8], and thus R is an integral domain.
By [Naoum and Mijbass, in Press, Examples 1.4(1)], R is
a faithful quasi-Dedekind R-module. Thus, Homg(M,R)
is a quasi-Dedekind R-module (Prop. 2.15).

We saw that Z is a quasi-Dedekind Z-module. It is clear
that 222 =Q(Z) and Q=Q(Z), where Q is the set of all
rational numbers. This fact is true for all uniform faithful

quasi-Dedekind R-modules, as the next theorem shows.

Theorem 2.16:

If M is a uniform quasi-Dedekind R-module and
Ezfvann(M), then I\;I = Q(ﬁ) as ﬁ -modules and
either M = Q(ﬁ) or M = Q(ﬁ) as ﬁ -modules.

Proof:

By [Naoum and Mijbass, in Press, Prop. 1.2], M is a
uniform faithful quasi-Dedekind R -module. Then by Th.
2.3, Ris an integral domain and M is R -isomorphic to an

R -submodule L of Q(R ) containing R. ThusM = Q(R)
and either M= Q(R ) or M = Q(R) (by Prop. 1.2).

Corollary 2.17:

If M is a uniform faithful quasi-Dedekind R-module,
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thenM = Q(R) as R-modules and either M= Q(R) or
M =Q(R).
The condition on the annihilator in Corollary 2.17 is

not superfluous. Consider the following example.

Example 2.18:

Let M= Z, as a Z-module. Z, is a quasi-Dedekind Z-
module and ann(Z,)= 27 # (0). l\?l =75 is not isomorphic
to Q(Z)=Q.

The converse of Theorem 2.16 is not true as the

following example shows.

Example 2.19:

Consider M=Z7, as a Zj-module. It is clear that
I\;I:Q(Z4):Z4. But Z; is not a quasi-Dedekind Z,-
module.

In the following theorem we give a condition under

which the converse of Theorem 2.16 is true.

Theorem 2.20:

Let M be an R-module and EZIUann(M). Mis a
uniform quasi-Dedekind R-module if and only if ann(M)
is a prime ideal of R and I\;I =Q(R) as R-modules.
Proof:

Assume that M is a uniform quasi-Dedekind R-
module. By [Naoum and Mijbass, in Press, Corollary
1.8], ann(M) is a prime ideal of R and by Th. 2.17,
I\;I =Q(R)as R-modules.

The converse, since ann(M) is a prime ideal of R,
thenR is an integral domain. Thus, Q(E) is a uniform
quasi-Dedekind R-module [Naoum and Mijbass, in
Press, Example 1.4(3)]. Thus, I\;I is a uniform quasi-
Dedekind R -module. Since M is an R -submodule of

M, then M is a uniform quasi-Dedekind R -module

[Naoum and Mijbass, on Press, Corollary 3.16]. And by

[Naoum and Mijbass, in Press, Prop. 1.2], M is a uniform

quasi-Dedekind R-module.

Corollary 2.21:

M is a uniform faithful quasi-Dedekind R-module if
and only if R is an integral domain and I\;I = Q(R) as R-
modules.

Proposition 2.22:

Let M be a uniform quasi-Dedekind R-module. If M
is a projective R-module, then M is a multiplication R-
module.

Proof:

By Th. 2.4, Endg(M)is commutative. And since M is
projective, then M is a multiplication R-module [(Naoum,
1991), Prop. 2.1].

83: Quasi-Dedekind Modules Over Dedekind

Domains

Recall that an integral domain R is called a Dedekind
domain if every non-zero ideal of R is invertible. It is
known that every non-zero prime ideal of a Dedekind
domain is maximal (Larsen and McCarthy, 1971).

Our main result of this section states that every
dualizable quasi-Dedekind module over a Dedekind
domain is a finitely generated faithful projective and a
mutiplication module, and the only dualizable quasi-

Dedekind Z-module is Z.

Proposition 3.1:

Let R be a Dedekind domain and let M be an R-
module. Then M is a finitely generated uniform faithful
quasi-Dedekind R-module if and only if M is isomorphic
to an ideal of R.

Proof:

Assume that M is a finitely generated uniform faithful

- 105 -



Uniform Quasi-Dedekind ...

Adil G. Naoum and Ali S. Mijbass

quasi- Dedekind R-module. Since R is a Dedekind
domain, then R is Noetherian. By Prop. 2.5, M is R-
isomorphic to an ideal of R.

The converse, since R is an integral domain, then R is
a quasi-Dedekind R-module [Naoum and Mijbass, in
Press, Examples 1.4(1)]. By [Naoum and Mijbass, in
Press, Examples 1.4(2)], every ideal of R is a quasi-
Dedekind R-module. Since R is Dedekind domain, then R
is Noetherian. Thus every ideal of R is a finitely
generated faithful ideal of R. Since M is isomorphic to an
ideal of R, then M is a finitely generated uniform faithful

quasi-Dedekind R-module.

Corollary 3.2:

Let R be a Dedekind domain. Then every finitely
generated uniform faithful quasi-Dedekind R-module is a
projective and a multiplication module.

Proof:

By Prop. 3.1, M is isomorphic to an ideal of R. Since
R is a Dedekind domain, then every non-zero ideal of R
is invertible and hence is projective, [Naoum and Al-
Alwan, 1996), Th. 4.24, P.125]. Therefore, M is

projective. By Prop. 2.22, M is a multiplication module.

Theorem 3.3:

Let R be a Dedekind domain and M is an R-module.
If M is a uniform faithful quasi-Dedekind R-module, then
M is a flat R-module.

Proof:

By [Naoum and Mijbass, in Press, Corollary 3.16],
every R-submodule of M is a uniform quasi-Dedekind R-
module. And by Corollary 3.2, every finitely generated
R-submodule of M is flat, thus by [Rotman, 1979,
Corollary 3.49, P.86], M is flat.

If R is not a Dedekind domain, a faithful quasi-
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Dedekind R-module may not be flat. Consider the

following example.

Example 3.4:

Let R=Z[x]. R is an integral domain, but R is not a
Dedekind domain. In fact, (x) is a prime ideal of R, but
(x) is not a maximal ideal of R. By [Naoum and Mijbass,
in Press, Examples 1.4(3)], Q(R) is a quasi-Dedekind R-
module and by [Naoum and Mijbass, in Press, Corollary
2.71 N=(1, x/2) is a quasi-Dedekind R-submodule of
Q(R) containing R. Suppose that N is a flat R-module.
Note that (-x).1+2.x/2=0. Thus, by [Larsen and
McCarthy, 1971, Ex. 13(b), P.33] there exist elements f,
f,, f3,..., fi €N and elements bji € R, i=1, 2, =1, 2,...k
such that -x bji +2.bj2:0,j:1,2,...,k ..(D)

and
k

1=_Zlfj bji ...(2)
J:

From(1),we get xbj1:2bjz,and hence bjl:2|jl and
bj2=X7 s> where j=12,...k and 1|;, Vi € Z[x]. Since
fj €N,=1,2,...k, then fj=hj +gj .x/2=(2hj +xg.)/2,
where, hj,g; €Z[x]. Thusl= Jkl [(2hj+xg )2)215,=
Z(2h+Xg)I122 h,l1+XZQ =2 q;
Ji)l(ﬁ where o= Z hJ ljis B= 9; |Jl This is
impossible because there isnoue Z[x] - {(_)} such that u(1-(2
ajtXx f ))=0. Therefore, N is not a flat R-module.

Proposition 3.5:

Let R be a Dedekind domain and M is an R-module
such that ann(M)# 0. Then M is a quasi-Dedekind R-
module if and only if ann(M) is a maximal ideal of R and
M = R/ann(M) as R-modules.

Proof:

Suppose that M is a quasi-Dedekind R-module. Thus,
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by [Naoum and Mijbass, in Press, Corollary 1.8], ann(M)
is a prime ideal of R and hence ann(M) is a maximal ideal
of R, [(Larsen and McCarthy, 1971), corollary 6.17, 136].
Whence R/ann(M) is a field and hence is self-injective.
By [Naoum and Mijbass, in Press, Prop. 3.9],
M = R/ann(M).

The converse follows from [Naoum and Mijbass, in
Press, Prop. 3.9].

In the following proposition, we characterize
dualizable quasi-Dedekind modules over Dedekind

domains.

Proposition 3.6:
Let R be a Dedekind domain and M is an R-module.
Then the following statements are equivalent:-
1- M is a dualizable quasi-Dedekind module.
2- M is isomorphic to an ideal of R and hence is a
finitely generated projective module.
3- M is a finitely generated faithful multiplication

module.
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